Spaces:
Runtime error
Runtime error
File size: 2,925 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
import torch
def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
"""
3D pixel shuffle.
"""
B, C, H, W, D = x.shape
C_ = C // scale_factor**3
x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
x = x.reshape(B, C_, H*scale_factor, W*scale_factor, D*scale_factor)
return x
def patchify(x: torch.Tensor, patch_size: int):
"""
Patchify a tensor.
Args:
x (torch.Tensor): (N, C, *spatial) tensor
patch_size (int): Patch size
"""
DIM = x.dim() - 2
for d in range(2, DIM + 2):
assert x.shape[d] % patch_size == 0, f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"
x = x.reshape(*x.shape[:2], *sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []))
x = x.permute(0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)]))
x = x.reshape(x.shape[0], x.shape[1] * (patch_size ** DIM), *(x.shape[-DIM:]))
return x
def unpatchify(x: torch.Tensor, patch_size: int):
"""
Unpatchify a tensor.
Args:
x (torch.Tensor): (N, C, *spatial) tensor
patch_size (int): Patch size
"""
DIM = x.dim() - 2
assert x.shape[1] % (patch_size ** DIM) == 0, f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"
x = x.reshape(x.shape[0], x.shape[1] // (patch_size ** DIM), *([patch_size] * DIM), *(x.shape[-DIM:]))
x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
x = x.reshape(x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)])
return x
|