File size: 19,127 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565f883
 
 
 
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# MIT License

# Copyright (c) Microsoft

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye] 
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
#
# Original file was released under MIT, with the full license text
# available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
#
# This modified file is released under the same license.
from typing import *
from contextlib import contextmanager
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from torchvision import transforms
from PIL import Image
from .base import Pipeline
from . import samplers
from ..modules import sparse as sp
import os

class Hi3DGenPipeline(Pipeline):

    def __init__(
        self,
        models: dict[str, nn.Module] = None,
        sparse_structure_sampler: samplers.Sampler = None,
        slat_sampler: samplers.Sampler = None,
        slat_normalization: dict = None,
        image_cond_model: str = None,
    ):
        if models is None:
            return
        super().__init__(models)
        self.sparse_structure_sampler = sparse_structure_sampler
        self.slat_sampler = slat_sampler
        self.sparse_structure_sampler_params = {}
        self.slat_sampler_params = {}
        self.slat_normalization = slat_normalization
        self._init_image_cond_model(image_cond_model)

    @staticmethod
    def from_pretrained(path: str) -> "Hi3DGenPipeline":
        """
        Load a pretrained model.

        Args:
            path (str): The path to the model. Can be either local path or a Hugging Face repository.
        """
        pipeline = super(Hi3DGenPipeline, Hi3DGenPipeline).from_pretrained(path)
        new_pipeline = Hi3DGenPipeline()
        new_pipeline.__dict__ = pipeline.__dict__
        args = pipeline._pretrained_args

        new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
        new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']

        new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
        new_pipeline.slat_sampler_params = args['slat_sampler']['params']

        new_pipeline.slat_normalization = args['slat_normalization']

        new_pipeline._init_image_cond_model(args['image_cond_model'])

        return new_pipeline
    
    def _init_image_cond_model(self, name: str):
        """
        Initialize the image conditioning model.
        """

        try:
            dinov2_model = torch.hub.load(os.path.join(torch.hub.get_dir(), 'facebookresearch_dinov2_main'), name, source='local',pretrained=True)
        except:
            dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True)
        dinov2_model.eval()
        self.models['image_cond_model'] = dinov2_model
        transform = transforms.Compose([
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        self.image_cond_model_transform = transform

    def preprocess_image(self, input: Image.Image, resolution=518) -> Image.Image:
        """
        Preprocess the input image using BiRefNet for background removal.
        Includes padding to maintain aspect ratio when resizing to 518x518.
        """
        # if has alpha channel, use it directly
        has_alpha = False
        if input.mode == 'RGBA':
            alpha = np.array(input)[:, :, -1]
            if not np.all(alpha == 255):
                has_alpha = True
        
        if has_alpha:
            output = input
        else:
            input = input.convert('RGB')
            max_size = max(input.size)
            scale = min(1, 1024 / max_size)
            if scale < 1:
                input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
            
            # Load BiRefNet model if not already loaded
            if getattr(self, 'birefnet_model', None) is None:
                self._lazy_load_birefnet()
            
            # Get mask using BiRefNet
            mask = self._get_birefnet_mask(input)
            
            # Convert input to RGBA and apply mask
            input_rgba = input.convert('RGBA')
            input_array = np.array(input_rgba)
            input_array[:, :, 3] = mask * 255  # Apply mask to alpha channel
            output = Image.fromarray(input_array)

        # Process the output image
        output_np = np.array(output)
        alpha = output_np[:, :, 3]
        
        # Find bounding box of non-transparent pixels
        bbox = np.argwhere(alpha > 0.8 * 255)
        if len(bbox) == 0:  # Handle case where no foreground is detected
            return input.convert('RGB')
        
        bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
        center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
        size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
        size = int(size * 1.2)
        
        # Calculate and apply crop bbox
        bbox = (
            int(center[0] - size // 2),
            int(center[1] - size // 2),
            int(center[0] + size // 2),
            int(center[1] + size // 2)
        )
        
        # Ensure bbox is within image bounds
        bbox = (
            max(0, bbox[0]),
            max(0, bbox[1]),
            min(output.width, bbox[2]),
            min(output.height, bbox[3])
        )
        
        output = output.crop(bbox)
        
        # Add padding to maintain aspect ratio
        width, height = output.size
        if width > height:
            new_height = width
            padding = (width - height) // 2
            padded_output = Image.new('RGBA', (width, new_height), (0, 0, 0, 0))
            padded_output.paste(output, (0, padding))
        else:
            new_width = height
            padding = (height - width) // 2
            padded_output = Image.new('RGBA', (new_width, height), (0, 0, 0, 0))
            padded_output.paste(output, (padding, 0))
        
        # Resize padded image to target size
        padded_output = padded_output.resize((resolution, resolution), Image.Resampling.LANCZOS)
        
        # Final processing
        output = np.array(padded_output).astype(np.float32) / 255
        output = np.dstack((
            output[:, :, :3] * output[:, :, 3:4],  # RGB channels premultiplied by alpha
            output[:, :, 3]                         # Original alpha channel
        ))
        output = Image.fromarray((output * 255).astype(np.uint8), mode='RGBA')
        
        return output

    def _lazy_load_birefnet(self):
        """Lazy loading of the BiRefNet model"""
        from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation, AutoModelForImageSegmentation
        self.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
            'weights/BiRefNet',
            trust_remote_code=True
        ).to(self.device)
        self.birefnet_model.eval()

    def _get_birefnet_mask(self, image: Image.Image) -> np.ndarray:
        """Get object mask using BiRefNet"""
        image_size = (1024, 1024)
        transform_image = transforms.Compose([
            transforms.Resize(image_size),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
        
        input_images = transform_image(image).unsqueeze(0).to(self.device)
        
        with torch.no_grad():
            preds = self.birefnet_model(input_images)[-1].sigmoid().cpu()
        
        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(image.size)
        mask_np = np.array(mask)

        return (mask_np > 128).astype(np.uint8)

    @torch.no_grad()
    def encode_image(self, image: Union[torch.Tensor, list[Image.Image]]) -> torch.Tensor:
        """
        Encode the image.

        Args:
            image (Union[torch.Tensor, list[Image.Image]]): The image to encode

        Returns:
            torch.Tensor: The encoded features.
        """
        if isinstance(image, torch.Tensor):
            assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
        elif isinstance(image, list):
            assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
            image = [i.resize((518, 518), Image.LANCZOS) for i in image]
            image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
            image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
            image = torch.stack(image).to(self.device)
        else:
            raise ValueError(f"Unsupported type of image: {type(image)}")
        
        image = self.image_cond_model_transform(image).to(self.device)
        features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
        patchtokens = F.layer_norm(features, features.shape[-1:])
        return patchtokens
        
    def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
        """
        Get the conditioning information for the model.

        Args:
            image (Union[torch.Tensor, list[Image.Image]]): The image prompts.

        Returns:
            dict: The conditioning information
        """
        cond = self.encode_image(image)
        neg_cond = torch.zeros_like(cond)
        return {
            'cond': cond,
            'neg_cond': neg_cond,
        }

    def sample_sparse_structure(
        self,
        cond: dict,
        num_samples: int = 1,
        sampler_params: dict = {},
    ) -> torch.Tensor:
        """
        Sample sparse structures with the given conditioning.
        
        Args:
            cond (dict): The conditioning information.
            num_samples (int): The number of samples to generate.
            sampler_params (dict): Additional parameters for the sampler.
        """
        # Sample occupancy latent
        flow_model = self.models['sparse_structure_flow_model']
        reso = flow_model.resolution
        noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
        sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
        z_s = self.sparse_structure_sampler.sample(
            flow_model,
            noise,
            **cond,
            **sampler_params,
            verbose=True
        )["samples"]
        
        # Decode occupancy latent
        decoder = self.models['sparse_structure_decoder']
        coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()

        return coords

    def decode_slat(
        self,
        slat: sp.SparseTensor,
        formats: List[str] = ['mesh',],
    ) -> dict:
        """
        Decode the structured latent.

        Args:
            slat (sp.SparseTensor): The structured latent.
            formats (List[str]): The formats to decode the structured latent to.

        Returns:
            dict: The decoded structured latent.
        """
        ret = {}
        if 'mesh' in formats:
            ret['mesh'] = self.models['slat_decoder_mesh'](slat)
        return ret
    
    def sample_slat(
        self,
        cond: dict,
        coords: torch.Tensor,
        sampler_params: dict = {},
    ) -> sp.SparseTensor:
        """
        Sample structured latent with the given conditioning.
        
        Args:
            cond (dict): The conditioning information.
            coords (torch.Tensor): The coordinates of the sparse structure.
            sampler_params (dict): Additional parameters for the sampler.
        """
        # Sample structured latent
        flow_model = self.models['slat_flow_model']
        noise = sp.SparseTensor(
            feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
            coords=coords,
        )
        sampler_params = {**self.slat_sampler_params, **sampler_params}
        slat = self.slat_sampler.sample(
            flow_model,
            noise,
            **cond,
            **sampler_params,
            verbose=True
        )["samples"]

        std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
        mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
        slat = slat * std + mean
        
        return slat

    @torch.no_grad()
    def run(
        self,
        image: Image.Image,
        num_samples: int = 1,
        seed: int = 42,
        sparse_structure_sampler_params: dict = {},
        slat_sampler_params: dict = {},
        formats: List[str] = ['mesh',],
        preprocess_image: bool = True,
    ) -> dict:
        """
        Run the pipeline.

        Args:
            image (Image.Image): The image prompt.
            num_samples (int): The number of samples to generate.
            sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
            slat_sampler_params (dict): Additional parameters for the structured latent sampler.
            preprocess_image (bool): Whether to preprocess the image.
        """
        if preprocess_image:
            image = self.preprocess_image(image)
        cond = self.get_cond([image])
        torch.manual_seed(seed)
        coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
        slat = self.sample_slat(cond, coords, slat_sampler_params)
        return self.decode_slat(slat, formats)

    @contextmanager
    def inject_sampler_multi_image(
        self,
        sampler_name: str,
        num_images: int,
        num_steps: int,
        mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
    ):
        """
        Inject a sampler with multiple images as condition.
        
        Args:
            sampler_name (str): The name of the sampler to inject.
            num_images (int): The number of images to condition on.
            num_steps (int): The number of steps to run the sampler for.
        """
        sampler = getattr(self, sampler_name)
        setattr(sampler, f'_old_inference_model', sampler._inference_model)

        if mode == 'stochastic':
            if num_images > num_steps:
                print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
                    "This may lead to performance degradation.\033[0m")

            cond_indices = (np.arange(num_steps) % num_images).tolist()
            def _new_inference_model(self, model, x_t, t, cond, **kwargs):
                cond_idx = cond_indices.pop(0)
                cond_i = cond[cond_idx:cond_idx+1]
                return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
        
        elif mode =='multidiffusion':
            from .samplers import FlowEulerSampler
            def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
                if cfg_interval[0] <= t <= cfg_interval[1]:
                    preds = []
                    for i in range(len(cond)):
                        preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
                    pred = sum(preds) / len(preds)
                    neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
                    return (1 + cfg_strength) * pred - cfg_strength * neg_pred
                else:
                    preds = []
                    for i in range(len(cond)):
                        preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
                    pred = sum(preds) / len(preds)
                    return pred
            
        else:
            raise ValueError(f"Unsupported mode: {mode}")
            
        sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))

        yield

        sampler._inference_model = sampler._old_inference_model
        delattr(sampler, f'_old_inference_model')

    @torch.no_grad()
    def run_multi_image(
        self,
        images: List[Image.Image],
        num_samples: int = 1,
        seed: int = 42,
        sparse_structure_sampler_params: dict = {},
        slat_sampler_params: dict = {},
        formats: List[str] = ['mesh', 'radiance_field'],
        preprocess_image: bool = True,
        mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
    ) -> dict:
        """
        Run the pipeline with multiple images as condition

        Args:
            images (List[Image.Image]): The multi-view images of the assets
            num_samples (int): The number of samples to generate.
            sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
            slat_sampler_params (dict): Additional parameters for the structured latent sampler.
            preprocess_image (bool): Whether to preprocess the image.
        """
        if preprocess_image:
            images = [self.preprocess_image(image) for image in images]
        cond = self.get_cond(images)
        cond['neg_cond'] = cond['neg_cond'][:1]
        torch.manual_seed(seed)
        ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
        with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
            coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
        slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
        with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
            slat = self.sample_slat(cond, coords, slat_sampler_params)
        return self.decode_slat(slat, formats)