Spaces:
Runtime error
Runtime error
File size: 19,127 Bytes
c295391 565f883 c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
#
# Original file was released under MIT, with the full license text
# available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
#
# This modified file is released under the same license.
from typing import *
from contextlib import contextmanager
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from torchvision import transforms
from PIL import Image
from .base import Pipeline
from . import samplers
from ..modules import sparse as sp
import os
class Hi3DGenPipeline(Pipeline):
def __init__(
self,
models: dict[str, nn.Module] = None,
sparse_structure_sampler: samplers.Sampler = None,
slat_sampler: samplers.Sampler = None,
slat_normalization: dict = None,
image_cond_model: str = None,
):
if models is None:
return
super().__init__(models)
self.sparse_structure_sampler = sparse_structure_sampler
self.slat_sampler = slat_sampler
self.sparse_structure_sampler_params = {}
self.slat_sampler_params = {}
self.slat_normalization = slat_normalization
self._init_image_cond_model(image_cond_model)
@staticmethod
def from_pretrained(path: str) -> "Hi3DGenPipeline":
"""
Load a pretrained model.
Args:
path (str): The path to the model. Can be either local path or a Hugging Face repository.
"""
pipeline = super(Hi3DGenPipeline, Hi3DGenPipeline).from_pretrained(path)
new_pipeline = Hi3DGenPipeline()
new_pipeline.__dict__ = pipeline.__dict__
args = pipeline._pretrained_args
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
new_pipeline.slat_sampler_params = args['slat_sampler']['params']
new_pipeline.slat_normalization = args['slat_normalization']
new_pipeline._init_image_cond_model(args['image_cond_model'])
return new_pipeline
def _init_image_cond_model(self, name: str):
"""
Initialize the image conditioning model.
"""
try:
dinov2_model = torch.hub.load(os.path.join(torch.hub.get_dir(), 'facebookresearch_dinov2_main'), name, source='local',pretrained=True)
except:
dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True)
dinov2_model.eval()
self.models['image_cond_model'] = dinov2_model
transform = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
self.image_cond_model_transform = transform
def preprocess_image(self, input: Image.Image, resolution=518) -> Image.Image:
"""
Preprocess the input image using BiRefNet for background removal.
Includes padding to maintain aspect ratio when resizing to 518x518.
"""
# if has alpha channel, use it directly
has_alpha = False
if input.mode == 'RGBA':
alpha = np.array(input)[:, :, -1]
if not np.all(alpha == 255):
has_alpha = True
if has_alpha:
output = input
else:
input = input.convert('RGB')
max_size = max(input.size)
scale = min(1, 1024 / max_size)
if scale < 1:
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
# Load BiRefNet model if not already loaded
if getattr(self, 'birefnet_model', None) is None:
self._lazy_load_birefnet()
# Get mask using BiRefNet
mask = self._get_birefnet_mask(input)
# Convert input to RGBA and apply mask
input_rgba = input.convert('RGBA')
input_array = np.array(input_rgba)
input_array[:, :, 3] = mask * 255 # Apply mask to alpha channel
output = Image.fromarray(input_array)
# Process the output image
output_np = np.array(output)
alpha = output_np[:, :, 3]
# Find bounding box of non-transparent pixels
bbox = np.argwhere(alpha > 0.8 * 255)
if len(bbox) == 0: # Handle case where no foreground is detected
return input.convert('RGB')
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
size = int(size * 1.2)
# Calculate and apply crop bbox
bbox = (
int(center[0] - size // 2),
int(center[1] - size // 2),
int(center[0] + size // 2),
int(center[1] + size // 2)
)
# Ensure bbox is within image bounds
bbox = (
max(0, bbox[0]),
max(0, bbox[1]),
min(output.width, bbox[2]),
min(output.height, bbox[3])
)
output = output.crop(bbox)
# Add padding to maintain aspect ratio
width, height = output.size
if width > height:
new_height = width
padding = (width - height) // 2
padded_output = Image.new('RGBA', (width, new_height), (0, 0, 0, 0))
padded_output.paste(output, (0, padding))
else:
new_width = height
padding = (height - width) // 2
padded_output = Image.new('RGBA', (new_width, height), (0, 0, 0, 0))
padded_output.paste(output, (padding, 0))
# Resize padded image to target size
padded_output = padded_output.resize((resolution, resolution), Image.Resampling.LANCZOS)
# Final processing
output = np.array(padded_output).astype(np.float32) / 255
output = np.dstack((
output[:, :, :3] * output[:, :, 3:4], # RGB channels premultiplied by alpha
output[:, :, 3] # Original alpha channel
))
output = Image.fromarray((output * 255).astype(np.uint8), mode='RGBA')
return output
def _lazy_load_birefnet(self):
"""Lazy loading of the BiRefNet model"""
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation, AutoModelForImageSegmentation
self.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
'weights/BiRefNet',
trust_remote_code=True
).to(self.device)
self.birefnet_model.eval()
def _get_birefnet_mask(self, image: Image.Image) -> np.ndarray:
"""Get object mask using BiRefNet"""
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_images = transform_image(image).unsqueeze(0).to(self.device)
with torch.no_grad():
preds = self.birefnet_model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
mask_np = np.array(mask)
return (mask_np > 128).astype(np.uint8)
@torch.no_grad()
def encode_image(self, image: Union[torch.Tensor, list[Image.Image]]) -> torch.Tensor:
"""
Encode the image.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image to encode
Returns:
torch.Tensor: The encoded features.
"""
if isinstance(image, torch.Tensor):
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
elif isinstance(image, list):
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
image = torch.stack(image).to(self.device)
else:
raise ValueError(f"Unsupported type of image: {type(image)}")
image = self.image_cond_model_transform(image).to(self.device)
features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
patchtokens = F.layer_norm(features, features.shape[-1:])
return patchtokens
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
"""
Get the conditioning information for the model.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image prompts.
Returns:
dict: The conditioning information
"""
cond = self.encode_image(image)
neg_cond = torch.zeros_like(cond)
return {
'cond': cond,
'neg_cond': neg_cond,
}
def sample_sparse_structure(
self,
cond: dict,
num_samples: int = 1,
sampler_params: dict = {},
) -> torch.Tensor:
"""
Sample sparse structures with the given conditioning.
Args:
cond (dict): The conditioning information.
num_samples (int): The number of samples to generate.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample occupancy latent
flow_model = self.models['sparse_structure_flow_model']
reso = flow_model.resolution
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
z_s = self.sparse_structure_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
)["samples"]
# Decode occupancy latent
decoder = self.models['sparse_structure_decoder']
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
return coords
def decode_slat(
self,
slat: sp.SparseTensor,
formats: List[str] = ['mesh',],
) -> dict:
"""
Decode the structured latent.
Args:
slat (sp.SparseTensor): The structured latent.
formats (List[str]): The formats to decode the structured latent to.
Returns:
dict: The decoded structured latent.
"""
ret = {}
if 'mesh' in formats:
ret['mesh'] = self.models['slat_decoder_mesh'](slat)
return ret
def sample_slat(
self,
cond: dict,
coords: torch.Tensor,
sampler_params: dict = {},
) -> sp.SparseTensor:
"""
Sample structured latent with the given conditioning.
Args:
cond (dict): The conditioning information.
coords (torch.Tensor): The coordinates of the sparse structure.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample structured latent
flow_model = self.models['slat_flow_model']
noise = sp.SparseTensor(
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
coords=coords,
)
sampler_params = {**self.slat_sampler_params, **sampler_params}
slat = self.slat_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
)["samples"]
std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
slat = slat * std + mean
return slat
@torch.no_grad()
def run(
self,
image: Image.Image,
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh',],
preprocess_image: bool = True,
) -> dict:
"""
Run the pipeline.
Args:
image (Image.Image): The image prompt.
num_samples (int): The number of samples to generate.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
preprocess_image (bool): Whether to preprocess the image.
"""
if preprocess_image:
image = self.preprocess_image(image)
cond = self.get_cond([image])
torch.manual_seed(seed)
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
@contextmanager
def inject_sampler_multi_image(
self,
sampler_name: str,
num_images: int,
num_steps: int,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
):
"""
Inject a sampler with multiple images as condition.
Args:
sampler_name (str): The name of the sampler to inject.
num_images (int): The number of images to condition on.
num_steps (int): The number of steps to run the sampler for.
"""
sampler = getattr(self, sampler_name)
setattr(sampler, f'_old_inference_model', sampler._inference_model)
if mode == 'stochastic':
if num_images > num_steps:
print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
"This may lead to performance degradation.\033[0m")
cond_indices = (np.arange(num_steps) % num_images).tolist()
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
cond_idx = cond_indices.pop(0)
cond_i = cond[cond_idx:cond_idx+1]
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
elif mode =='multidiffusion':
from .samplers import FlowEulerSampler
def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
if cfg_interval[0] <= t <= cfg_interval[1]:
preds = []
for i in range(len(cond)):
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
pred = sum(preds) / len(preds)
neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
else:
preds = []
for i in range(len(cond)):
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
pred = sum(preds) / len(preds)
return pred
else:
raise ValueError(f"Unsupported mode: {mode}")
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
yield
sampler._inference_model = sampler._old_inference_model
delattr(sampler, f'_old_inference_model')
@torch.no_grad()
def run_multi_image(
self,
images: List[Image.Image],
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh', 'radiance_field'],
preprocess_image: bool = True,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
) -> dict:
"""
Run the pipeline with multiple images as condition
Args:
images (List[Image.Image]): The multi-view images of the assets
num_samples (int): The number of samples to generate.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
preprocess_image (bool): Whether to preprocess the image.
"""
if preprocess_image:
images = [self.preprocess_image(image) for image in images]
cond = self.get_cond(images)
cond['neg_cond'] = cond['neg_cond'][:1]
torch.manual_seed(seed)
ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
|