Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) Microsoft | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# Copyright (c) [2025] [Microsoft] | |
# Copyright (c) [2025] [Chongjie Ye] | |
# SPDX-License-Identifier: MIT | |
# This file has been modified by Chongjie Ye on 2025/04/10 | |
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE. | |
# This modified file is released under the same license. | |
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..modules.norm import GroupNorm32, ChannelLayerNorm32 | |
from ..modules.spatial import pixel_shuffle_3d | |
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 | |
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module: | |
""" | |
Return a normalization layer. | |
""" | |
if norm_type == "group": | |
return GroupNorm32(32, *args, **kwargs) | |
elif norm_type == "layer": | |
return ChannelLayerNorm32(*args, **kwargs) | |
else: | |
raise ValueError(f"Invalid norm type {norm_type}") | |
class ResBlock3d(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
out_channels: Optional[int] = None, | |
norm_type: Literal["group", "layer"] = "layer", | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.norm1 = norm_layer(norm_type, channels) | |
self.norm2 = norm_layer(norm_type, self.out_channels) | |
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1) | |
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1)) | |
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = self.norm1(x) | |
h = F.silu(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = F.silu(h) | |
h = self.conv2(h) | |
h = h + self.skip_connection(x) | |
return h | |
class DownsampleBlock3d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
mode: Literal["conv", "avgpool"] = "conv", | |
): | |
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}" | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if mode == "conv": | |
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2) | |
elif mode == "avgpool": | |
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if hasattr(self, "conv"): | |
return self.conv(x) | |
else: | |
return F.avg_pool3d(x, 2) | |
class UpsampleBlock3d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
mode: Literal["conv", "nearest"] = "conv", | |
): | |
assert mode in ["conv", "nearest"], f"Invalid mode {mode}" | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if mode == "conv": | |
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1) | |
elif mode == "nearest": | |
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if hasattr(self, "conv"): | |
x = self.conv(x) | |
return pixel_shuffle_3d(x, 2) | |
else: | |
return F.interpolate(x, scale_factor=2, mode="nearest") | |
class SparseStructureEncoder(nn.Module): | |
""" | |
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3). | |
Args: | |
in_channels (int): Channels of the input. | |
latent_channels (int): Channels of the latent representation. | |
num_res_blocks (int): Number of residual blocks at each resolution. | |
channels (List[int]): Channels of the encoder blocks. | |
num_res_blocks_middle (int): Number of residual blocks in the middle. | |
norm_type (Literal["group", "layer"]): Type of normalization layer. | |
use_fp16 (bool): Whether to use FP16. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
latent_channels: int, | |
num_res_blocks: int, | |
channels: List[int], | |
num_res_blocks_middle: int = 2, | |
norm_type: Literal["group", "layer"] = "layer", | |
use_fp16: bool = False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.latent_channels = latent_channels | |
self.num_res_blocks = num_res_blocks | |
self.channels = channels | |
self.num_res_blocks_middle = num_res_blocks_middle | |
self.norm_type = norm_type | |
self.use_fp16 = use_fp16 | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1) | |
self.blocks = nn.ModuleList([]) | |
for i, ch in enumerate(channels): | |
self.blocks.extend([ | |
ResBlock3d(ch, ch) | |
for _ in range(num_res_blocks) | |
]) | |
if i < len(channels) - 1: | |
self.blocks.append( | |
DownsampleBlock3d(ch, channels[i+1]) | |
) | |
self.middle_block = nn.Sequential(*[ | |
ResBlock3d(channels[-1], channels[-1]) | |
for _ in range(num_res_blocks_middle) | |
]) | |
self.out_layer = nn.Sequential( | |
norm_layer(norm_type, channels[-1]), | |
nn.SiLU(), | |
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1) | |
) | |
if use_fp16: | |
self.convert_to_fp16() | |
def device(self) -> torch.device: | |
""" | |
Return the device of the model. | |
""" | |
return next(self.parameters()).device | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.use_fp16 = True | |
self.dtype = torch.float16 | |
self.blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.use_fp16 = False | |
self.dtype = torch.float32 | |
self.blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor: | |
h = self.input_layer(x) | |
h = h.type(self.dtype) | |
for block in self.blocks: | |
h = block(h) | |
h = self.middle_block(h) | |
h = h.type(x.dtype) | |
h = self.out_layer(h) | |
mean, logvar = h.chunk(2, dim=1) | |
if sample_posterior: | |
std = torch.exp(0.5 * logvar) | |
z = mean + std * torch.randn_like(std) | |
else: | |
z = mean | |
if return_raw: | |
return z, mean, logvar | |
return z | |
class SparseStructureDecoder(nn.Module): | |
""" | |
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3). | |
Args: | |
out_channels (int): Channels of the output. | |
latent_channels (int): Channels of the latent representation. | |
num_res_blocks (int): Number of residual blocks at each resolution. | |
channels (List[int]): Channels of the decoder blocks. | |
num_res_blocks_middle (int): Number of residual blocks in the middle. | |
norm_type (Literal["group", "layer"]): Type of normalization layer. | |
use_fp16 (bool): Whether to use FP16. | |
""" | |
def __init__( | |
self, | |
out_channels: int, | |
latent_channels: int, | |
num_res_blocks: int, | |
channels: List[int], | |
num_res_blocks_middle: int = 2, | |
norm_type: Literal["group", "layer"] = "layer", | |
use_fp16: bool = False, | |
): | |
super().__init__() | |
self.out_channels = out_channels | |
self.latent_channels = latent_channels | |
self.num_res_blocks = num_res_blocks | |
self.channels = channels | |
self.num_res_blocks_middle = num_res_blocks_middle | |
self.norm_type = norm_type | |
self.use_fp16 = use_fp16 | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1) | |
self.middle_block = nn.Sequential(*[ | |
ResBlock3d(channels[0], channels[0]) | |
for _ in range(num_res_blocks_middle) | |
]) | |
self.blocks = nn.ModuleList([]) | |
for i, ch in enumerate(channels): | |
self.blocks.extend([ | |
ResBlock3d(ch, ch) | |
for _ in range(num_res_blocks) | |
]) | |
if i < len(channels) - 1: | |
self.blocks.append( | |
UpsampleBlock3d(ch, channels[i+1]) | |
) | |
self.out_layer = nn.Sequential( | |
norm_layer(norm_type, channels[-1]), | |
nn.SiLU(), | |
nn.Conv3d(channels[-1], out_channels, 3, padding=1) | |
) | |
if use_fp16: | |
self.convert_to_fp16() | |
def device(self) -> torch.device: | |
""" | |
Return the device of the model. | |
""" | |
return next(self.parameters()).device | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.use_fp16 = True | |
self.dtype = torch.float16 | |
self.blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.use_fp16 = False | |
self.dtype = torch.float32 | |
self.blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = self.input_layer(x) | |
h = h.type(self.dtype) | |
h = self.middle_block(h) | |
for block in self.blocks: | |
h = block(h) | |
h = h.type(x.dtype) | |
h = self.out_layer(h) | |
return h | |