algohunt
initial_commit
c295391
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
from ...modules import sparse as sp
from .base import SparseTransformerBase
from ...representations import MeshExtractResult
from ...representations.mesh import SparseFeatures2Mesh
class SparseSubdivideBlock3d(nn.Module):
"""
A 3D subdivide block that can subdivide the sparse tensor.
Args:
channels: channels in the inputs and outputs.
out_channels: if specified, the number of output channels.
num_groups: the number of groups for the group norm.
"""
def __init__(
self,
channels: int,
resolution: int,
out_channels: Optional[int] = None,
num_groups: int = 32
):
super().__init__()
self.channels = channels
self.resolution = resolution
self.out_resolution = resolution * 2
self.out_channels = out_channels or channels
self.act_layers = nn.Sequential(
sp.SparseGroupNorm32(num_groups, channels),
sp.SparseSiLU()
)
self.sub = sp.SparseSubdivide()
self.out_layers = nn.Sequential(
sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"),
sp.SparseGroupNorm32(num_groups, self.out_channels),
sp.SparseSiLU(),
zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}")
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
Args:
x: an [N x C x ...] Tensor of features.
Returns:
an [N x C x ...] Tensor of outputs.
"""
h = self.act_layers(x)
h = self.sub(h)
x = self.sub(x)
h = self.out_layers(h)
h = h + self.skip_connection(x)
return h
class SLatMeshDecoder(SparseTransformerBase):
def __init__(
self,
resolution: int,
model_channels: int,
latent_channels: int,
num_blocks: int,
num_heads: Optional[int] = None,
num_head_channels: Optional[int] = 64,
mlp_ratio: float = 4,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
window_size: int = 8,
pe_mode: Literal["ape", "rope"] = "ape",
use_fp16: bool = False,
use_checkpoint: bool = False,
qk_rms_norm: bool = False,
representation_config: dict = None,
):
super().__init__(
in_channels=latent_channels,
model_channels=model_channels,
num_blocks=num_blocks,
num_heads=num_heads,
num_head_channels=num_head_channels,
mlp_ratio=mlp_ratio,
attn_mode=attn_mode,
window_size=window_size,
pe_mode=pe_mode,
use_fp16=use_fp16,
use_checkpoint=use_checkpoint,
qk_rms_norm=qk_rms_norm,
)
self.resolution = resolution
self.rep_config = representation_config
self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
self.out_channels = self.mesh_extractor.feats_channels
self.upsample = nn.ModuleList([
SparseSubdivideBlock3d(
channels=model_channels,
resolution=resolution,
out_channels=model_channels // 4
),
SparseSubdivideBlock3d(
channels=model_channels // 4,
resolution=resolution * 2,
out_channels=model_channels // 8
)
])
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)
self.initialize_weights()
if use_fp16:
self.convert_to_fp16()
def initialize_weights(self) -> None:
super().initialize_weights()
# Zero-out output layers:
nn.init.constant_(self.out_layer.weight, 0)
nn.init.constant_(self.out_layer.bias, 0)
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16.
"""
super().convert_to_fp16()
self.upsample.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model to float32.
"""
super().convert_to_fp32()
self.upsample.apply(convert_module_to_f32)
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
"""
Convert a batch of network outputs to 3D representations.
Args:
x: The [N x * x C] sparse tensor output by the network.
Returns:
list of representations
"""
ret = []
for i in range(x.shape[0]):
mesh = self.mesh_extractor(x[i], training=self.training)
ret.append(mesh)
return ret
def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
h = super().forward(x)
for block in self.upsample:
h = block(h)
h = h.type(x.dtype)
h = self.out_layer(h)
return self.to_representation(h)