# MIT License # Copyright (c) Microsoft # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright (c) [2025] [Microsoft] # Copyright (c) [2025] [Chongjie Ye] # SPDX-License-Identifier: MIT # This file has been modified by Chongjie Ye on 2025/04/10 # Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE. # This modified file is released under the same license. import importlib __attributes = { 'SparseStructureEncoder': 'sparse_structure_vae', 'SparseStructureDecoder': 'sparse_structure_vae', 'SparseStructureFlowModel': 'sparse_structure_flow', 'SLatEncoder': 'structured_latent_vae', 'SLatGaussianDecoder': 'structured_latent_vae', 'SLatRadianceFieldDecoder': 'structured_latent_vae', 'SLatMeshDecoder': 'structured_latent_vae', 'SLatFlowModel': 'structured_latent_flow', } __submodules = [] __all__ = list(__attributes.keys()) + __submodules def __getattr__(name): if name not in globals(): if name in __attributes: module_name = __attributes[name] module = importlib.import_module(f".{module_name}", __name__) globals()[name] = getattr(module, name) elif name in __submodules: module = importlib.import_module(f".{name}", __name__) globals()[name] = module else: raise AttributeError(f"module {__name__} has no attribute {name}") return globals()[name] def from_pretrained(path: str, **kwargs): """ Load a model from a pretrained checkpoint. Args: path: The path to the checkpoint. Can be either local path or a Hugging Face model name. NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively. **kwargs: Additional arguments for the model constructor. """ import os import json from safetensors.torch import load_file is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors") if is_local: config_file = f"{path}.json" model_file = f"{path}.safetensors" else: from huggingface_hub import hf_hub_download path_parts = path.split('/') repo_id = f'{path_parts[0]}/{path_parts[1]}' model_name = '/'.join(path_parts[2:]) config_file = hf_hub_download(repo_id, f"{model_name}.json") model_file = hf_hub_download(repo_id, f"{model_name}.safetensors") with open(config_file, 'r') as f: config = json.load(f) model = __getattr__(config['name'])(**config['args'], **kwargs) model.load_state_dict(load_file(model_file)) return model # For Pylance if __name__ == '__main__': from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder from .sparse_structure_flow import SparseStructureFlowModel from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder from .structured_latent_flow import SLatFlowModel