# MIT License # Copyright (c) Microsoft # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright (c) [2025] [Microsoft] # SPDX-License-Identifier: MIT import torch import torch.nn as nn from .. import SparseTensor class SparseConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None): super(SparseConv3d, self).__init__() if 'torchsparse' not in globals(): import torchsparse self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias) def forward(self, x: SparseTensor) -> SparseTensor: out = self.conv(x.data) new_shape = [x.shape[0], self.conv.out_channels] out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None) out._spatial_cache = x._spatial_cache out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)]) return out class SparseInverseConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None): super(SparseInverseConv3d, self).__init__() if 'torchsparse' not in globals(): import torchsparse self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True) def forward(self, x: SparseTensor) -> SparseTensor: out = self.conv(x.data) new_shape = [x.shape[0], self.conv.out_channels] out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None) out._spatial_cache = x._spatial_cache out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)]) return out