# MIT License # Copyright (c) Microsoft # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright (c) [2025] [Microsoft] # SPDX-License-Identifier: MIT import torch import torch.nn as nn from . import SparseTensor __all__ = [ 'SparseReLU', 'SparseSiLU', 'SparseGELU', 'SparseActivation' ] class SparseReLU(nn.ReLU): def forward(self, input: SparseTensor) -> SparseTensor: return input.replace(super().forward(input.feats)) class SparseSiLU(nn.SiLU): def forward(self, input: SparseTensor) -> SparseTensor: return input.replace(super().forward(input.feats)) class SparseGELU(nn.GELU): def forward(self, input: SparseTensor) -> SparseTensor: return input.replace(super().forward(input.feats)) class SparseActivation(nn.Module): def __init__(self, activation: nn.Module): super().__init__() self.activation = activation def forward(self, input: SparseTensor) -> SparseTensor: return input.replace(self.activation(input.feats))