# MIT License # Copyright (c) Microsoft # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright (c) [2025] [Microsoft] # SPDX-License-Identifier: MIT from typing import * import torch import torch.nn as nn from ..attention import MultiHeadAttention from ..norm import LayerNorm32 from .blocks import FeedForwardNet class ModulatedTransformerBlock(nn.Module): """ Transformer block (MSA + FFN) with adaptive layer norm conditioning. """ def __init__( self, channels: int, num_heads: int, mlp_ratio: float = 4.0, attn_mode: Literal["full", "windowed"] = "full", window_size: Optional[int] = None, shift_window: Optional[Tuple[int, int, int]] = None, use_checkpoint: bool = False, use_rope: bool = False, qk_rms_norm: bool = False, qkv_bias: bool = True, share_mod: bool = False, ): super().__init__() self.use_checkpoint = use_checkpoint self.share_mod = share_mod self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) self.attn = MultiHeadAttention( channels, num_heads=num_heads, attn_mode=attn_mode, window_size=window_size, shift_window=shift_window, qkv_bias=qkv_bias, use_rope=use_rope, qk_rms_norm=qk_rms_norm, ) self.mlp = FeedForwardNet( channels, mlp_ratio=mlp_ratio, ) if not share_mod: self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(channels, 6 * channels, bias=True) ) def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor: if self.share_mod: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1) else: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1) h = self.norm1(x) h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1) h = self.attn(h) h = h * gate_msa.unsqueeze(1) x = x + h h = self.norm2(x) h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) h = self.mlp(h) h = h * gate_mlp.unsqueeze(1) x = x + h return x def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor: if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False) else: return self._forward(x, mod) class ModulatedTransformerCrossBlock(nn.Module): """ Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning. """ def __init__( self, channels: int, ctx_channels: int, num_heads: int, mlp_ratio: float = 4.0, attn_mode: Literal["full", "windowed"] = "full", window_size: Optional[int] = None, shift_window: Optional[Tuple[int, int, int]] = None, use_checkpoint: bool = False, use_rope: bool = False, qk_rms_norm: bool = False, qk_rms_norm_cross: bool = False, qkv_bias: bool = True, share_mod: bool = False, ): super().__init__() self.use_checkpoint = use_checkpoint self.share_mod = share_mod self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) self.self_attn = MultiHeadAttention( channels, num_heads=num_heads, type="self", attn_mode=attn_mode, window_size=window_size, shift_window=shift_window, qkv_bias=qkv_bias, use_rope=use_rope, qk_rms_norm=qk_rms_norm, ) self.cross_attn = MultiHeadAttention( channels, ctx_channels=ctx_channels, num_heads=num_heads, type="cross", attn_mode="full", qkv_bias=qkv_bias, qk_rms_norm=qk_rms_norm_cross, ) self.mlp = FeedForwardNet( channels, mlp_ratio=mlp_ratio, ) if not share_mod: self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(channels, 6 * channels, bias=True) ) def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor): if self.share_mod: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1) else: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1) h = self.norm1(x) h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1) h = self.self_attn(h) h = h * gate_msa.unsqueeze(1) x = x + h h = self.norm2(x) h = self.cross_attn(h, context) x = x + h h = self.norm3(x) h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) h = self.mlp(h) h = h * gate_mlp.unsqueeze(1) x = x + h return x def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor): if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False) else: return self._forward(x, mod, context)