File size: 6,320 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from einops import rearrange
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F


class VectorQuantizer(nn.Module):
    def __init__(self, n_embed, embed_dim, l2_norm, beta, input_format='bchw'):
        super().__init__()

        self.n_embed = n_embed
        self.embed_dim = embed_dim
        self.l2_norm = l2_norm
        self.beta = beta
        assert input_format in ['bchw', 'blc']
        self.input_format = input_format

        self.embedding = nn.Embedding(n_embed, embed_dim)
        self.embedding.weight.data.uniform_(-1 / n_embed, 1 / n_embed)
        self.bits_per_index = int(np.ceil(np.log2(n_embed)))

    def forward(self, z):
        batch = z.shape[0]
        if self.input_format == 'bchw':
            z = rearrange(z, 'b c h w -> b h w c')

        if self.l2_norm:
            z = F.normalize(z, dim=-1)
            z_flatten = z.reshape(-1, self.embed_dim)
            embedding_weight = F.normalize(self.embedding.weight, dim=-1)
            d = -z_flatten @ embedding_weight.t()
        else:
            z_flatten = z.reshape(-1, self.embed_dim)
            d = torch.sum(z_flatten ** 2, dim=1, keepdim=True) + torch.sum(self.embedding.weight ** 2, dim=1) - 2 * z_flatten @ self.embedding.weight.t()

        min_encoding_indices = torch.argmin(d.detach(), dim=1)
        if not self.training:
            used_codes = torch.unique(min_encoding_indices, return_counts=False)
        else:
            used_codes = None
        cb_usage = F.one_hot(min_encoding_indices, self.n_embed).sum(0)
        cb_entropy = self.get_entropy(cb_usage)

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        if self.l2_norm:
            z_q = F.normalize(z_q, dim=-1)

        # fix the issue with loss scaling
        # loss weight should not associate with the dimensionality of words
        # loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        loss = self.beta * torch.mean(((z_q.detach() - z) ** 2).sum(dim=-1)) + torch.mean(((z_q - z.detach()) ** 2).sum(dim=-1))

        z_q = z + (z_q - z).detach()
        if self.input_format == 'bchw':
            z_q = rearrange(z_q, 'b h w c -> b c h w')
        return z_q, loss, {"H":cb_entropy, "used_codes": used_codes, 'indices': min_encoding_indices.view(batch, -1)}

    def get_entropy(self, count, eps=1e-4):
        probs = (count + eps) / (count + eps).sum()
        H = -(probs * torch.log(probs)).sum()
        return H


    def get_codebook_entry(self, indices):
        z_q = self.embedding(indices)
        if self.l2_norm:
            z_q = F.normalize(z_q, dim=-1)

        if self.input_format == 'bchw':
            h = w = int(z_q.shape[1] ** 0.5)
            assert h * w == z_q.shape[1], 'Invalid sequence length'
            z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
        return z_q


class EMAVectorQuantizer(nn.Module):
    def __init__(self, n_embed, embed_dim, l2_norm, beta, decay=0.99, eps=1e-5, random_restart=True, restart_threshold=1.0, input_format='bchw'):
        super().__init__()

        self.n_embed = n_embed
        self.embed_dim = embed_dim
        self.l2_norm = l2_norm
        self.beta = beta
        self.decay = decay
        self.eps = eps
        self.random_restart = random_restart
        self.restart_threshold = restart_threshold
        self.input_format = input_format

        self.embedding = nn.Embedding(n_embed, embed_dim)
        self.embedding.weight.data.uniform_(-1 / n_embed, 1 / n_embed) # TODO (yzhao): test other initialization methods 
        self.register_buffer("ema_cluster_size", torch.zeros(self.n_embed))
        self.embedding_avg = nn.Parameter(torch.Tensor(self.n_embed, self.embed_dim))
        self.embedding_avg.data.copy_(self.embedding.weight.data)

    def _tile(self, z):
        n_z, embedding_dim = z.shape
        if n_z < self.n_embed:
            n_repeats = (self.n_embed + n_z - 1) // n_z
            std = 0.01 / np.sqrt(embedding_dim)
            z = z.repeat(n_repeats, 1)
            z = z + torch.randn_like(z) * std
        return z

    def forward(self, z):
        if self.input_format == 'bchw':
            z = rearrange(z, 'b c h w -> b h w c')
        z_flatten = z.reshape(-1, self.embed_dim)

        d = torch.sum(z_flatten ** 2, dim=1, keepdim=True) + torch.sum(self.embedding.weight ** 2, dim=1) - 2 * z_flatten @ self.embedding.weight.t()

        encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
        encodings = torch.zeros(encoding_indices.size(0), self.n_embed, device=z.device)
        encodings.scatter_(1, encoding_indices, 1)

        z_q = self.embedding(encoding_indices).view(z.shape)
        if self.l2_norm:
            z = F.normalize(z, dim=-1)
            z_q = F.normalize(z_q, dim=-1)

        if self.training:
            # EMA update cluster size
            encodings_sum = encodings.sum(0)
            if dist.is_initialized(): dist.all_reduce(encodings_sum)
            self.ema_cluster_size.data.mul_(self.decay).add_(encodings_sum, alpha=1-self.decay)

            # EMA update of the embedding vectors
            dw = encodings.t() @ z_flatten
            if dist.is_initialized(): dist.all_reduce(dw)
            self.embedding_avg.data.mul_(self.decay).add_(dw, alpha=1-self.decay)
 
            # Laplace smoothing of the cluster size
            n = torch.sum(self.ema_cluster_size)
            weights = (self.ema_cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
            self.embedding.weight.data = self.embedding_avg.data / weights.unsqueeze(1)

            if self.random_restart:
                zz = self._tile(z_flatten)
                _k_rand = zz[torch.randperm(zz.size(0))][:self.n_embed]
                if dist.is_initialized(): dist.broadcast(_k_rand, 0)
                usage = (self.ema_cluster_size.view(-1, 1) > self.restart_threshold).float()
                self.embedding.weight.data.mul_(usage).add_(_k_rand * (1 - usage))

        loss = self.beta * torch.mean((z_q.detach() - z) ** 2)

        z_q = z + (z_q - z).detach()
        if self.input_format == 'bchw':
            z_q = rearrange(z_q, 'b h w c -> b c h w')
        # TODO (yzhao): monitor utility of the dictionary
        return z_q, loss, {}