Spaces:
Sleeping
Sleeping
File size: 6,891 Bytes
9d3e16e 3945713 9d3e16e 60d6fec 9d3e16e 60d6fec 7305727 9d3e16e 7305727 71ea8b6 7305727 761d26a 7305727 9d3e16e 98091b2 7305727 d7a9a8c 9d3e16e d2ac32f d7a9a8c 289b013 7e3f748 289b013 1b05f97 d7a9a8c 60d6fec 0911ff4 27295ef 60d6fec 9d3e16e 60d6fec 79507aa 60d6fec 9d3e16e 60d6fec 1b05f97 7e3f748 289b013 1b05f97 289b013 d2ac32f 1b05f97 7305727 9d3e16e 60d6fec cff9759 60d6fec ac83549 9d3e16e 60d6fec a69f1b6 7305727 9d3e16e 60d6fec 7305727 60d6fec 7305727 60d6fec 7305727 60d6fec 7305727 60d6fec 7305727 9d3e16e 60d6fec 78cdfd0 60d6fec 1b05f97 9d3e16e b8dbdeb a55b31d 9d3e16e d7a9a8c 9d3e16e 3fc73f7 9d3e16e 3fc73f7 9d3e16e 3fc73f7 d7a9a8c 9d3e16e 1b05f97 667fd5f 9d3e16e 58ff4cc 60d6fec 58ff4cc 60d6fec 9d3e16e 911f187 9d3e16e 58ff4cc b553789 3945713 9d3e16e 3945713 9d3e16e 58ff4cc 9d3e16e 8dca5c0 58ff4cc cff9759 fb17c94 9d3e16e fb17c94 60d6fec 911f187 dfbd6ee bc129d5 9d3e16e 911f187 dfbd6ee 9d3e16e 3945713 9d3e16e e4c9f86 79507aa 00b6c6d 9d3e16e 911f187 8dca5c0 9d3e16e e4c9f86 9d3e16e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# ===東吳大學資料系 2025 年 LINEBOT ===
import base64
import logging
import os
import tempfile
import markdown
from bs4 import BeautifulSoup
from flask import Flask, abort, request, send_from_directory
from linebot.v3 import WebhookHandler
from linebot.v3.exceptions import InvalidSignatureError
from linebot.v3.messaging import (
ApiClient,
Configuration,
ImageMessage,
MessagingApi,
MessagingApiBlob,
ReplyMessageRequest,
TextMessage,
)
from linebot.v3.webhooks import ImageMessageContent, MessageEvent, TextMessageContent
from openai import OpenAI
# === 初始化OpenAI模型 ===
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
text_system_prompt = "你是一個中文的AI助手,請用繁體中文回答"
# === 先建立第一個對話,之後可以延續這個對話 ===
response = client.responses.create(
model="gpt-4o-mini",
input=[{"role": "system", "content": text_system_prompt}],
)
message_id = response.id
# === 初始設定 ===
static_tmp_path = tempfile.gettempdir()
os.makedirs(static_tmp_path, exist_ok=True)
base_url = os.getenv("SPACE_HOST") # e.g., "your-space-name.hf.space"
# === Flask 應用初始化 ===
app = Flask(__name__)
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
app.logger.setLevel(logging.INFO)
channel_secret = os.environ.get("YOUR_CHANNEL_SECRET")
channel_access_token = os.environ.get("YOUR_CHANNEL_ACCESS_TOKEN")
configuration = Configuration(access_token=channel_access_token)
handler = WebhookHandler(channel_secret)
# === AI Query 包裝 ===
def query(payload, previous_response_id):
second_response = client.responses.create(
model="gpt-4o-mini",
previous_response_id=previous_response_id,
input=[{"role": "user", "content": f"{payload}"}],
)
return second_response
# === 靜態圖檔路由 ===
@app.route("/images/<filename>")
def serve_image(filename):
return send_from_directory(static_tmp_path, filename)
# === LINE Webhook 接收端點 ===
@app.route("/")
def home():
return {"message": "Line Webhook Server"}
@app.route("/", methods=["POST"])
def callback():
signature = request.headers.get("X-Line-Signature")
body = request.get_data(as_text=True)
app.logger.info(f"Request body: {body}")
try:
handler.handle(body, signature)
except InvalidSignatureError:
app.logger.warning("Invalid signature. Please check channel credentials.")
abort(400)
return "OK"
# === 處理文字訊息 ===
@handler.add(MessageEvent, message=TextMessageContent)
def handle_text_message(event):
global message_id
user_input = event.message.text.strip()
if user_input.startswith("AI "):
prompt = user_input[3:].strip()
try:
response = client.images.generate(
model="dall-e-3",
prompt=f"使用下面的文字來畫一幅畫:{prompt}",
size="1024x1024",
quality="standard",
n=1,
)
image_url = response.data[0].url
app.logger.info(image_url)
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
line_bot_api.reply_message(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[
ImageMessage(
original_content_url=image_url,
preview_image_url=image_url,
)
],
)
)
except Exception as e:
app.logger.error(f"DALL·E 3 API error: {e}")
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
line_bot_api.reply_message(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[TextMessage(text="抱歉,生成圖像時發生錯誤。")],
)
)
else:
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
response = query(event.message.text, previous_response_id=message_id)
message_id = response.id
html_msg = markdown.markdown(response.output_text)
soup = BeautifulSoup(html_msg, "html.parser")
line_bot_api.reply_message_with_http_info(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[TextMessage(text=soup.get_text())],
)
)
# === 處理圖片訊息 ===
@handler.add(MessageEvent, message=ImageMessageContent)
def handle_image_message(event):
# === 以下是處理圖片回傳部分 === #
with ApiClient(configuration) as api_client:
blob_api = MessagingApiBlob(api_client)
content = blob_api.get_message_content(message_id=event.message.id)
image_bytes = content
# Step 2:轉成 base64 字串
base64_string = base64.b64encode(image_bytes).decode("utf-8")
# Step 3:組成 OpenAI 的 data URI 格式
data_uri = f"data:image/png;base64,{base64_string}"
app.logger.info(f"Data URI: {data_uri}")
# Step 4:將圖片存到本地端
with tempfile.NamedTemporaryFile(
dir=static_tmp_path, suffix=".jpg", delete=False
) as tf:
tf.write(content)
filename = os.path.basename(tf.name)
image_url = f"https://{base_url}/images/{filename}"
app.logger.info(f"Image URL: {image_url}")
# === 以下是處理解釋圖片部分 === #
response = client.responses.create(
model="gpt-4.1-nano",
input=[
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "describe the image in traditional chinese",
},
{
"type": "input_image",
"image_url": data_uri,
},
],
}
],
)
app.logger.info(response.output_text)
# === 以下是回傳圖片部分 === #
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
line_bot_api.reply_message(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[
ImageMessage(
original_content_url=image_url, preview_image_url=image_url
),
TextMessage(text=response.output_text),
],
)
) |