Spaces:
Build error
Build error
| import openai | |
| import os | |
| import pdfplumber | |
| from langchain.chains.mapreduce import MapReduceChain | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.chains.summarize import load_summarize_chain | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.document_loaders import UnstructuredFileLoader | |
| from langchain.prompts import PromptTemplate | |
| import logging | |
| import json | |
| from typing import List | |
| import mimetypes | |
| import validators | |
| import requests | |
| import tempfile | |
| from langchain.chains import create_extraction_chain | |
| from GoogleNews import GoogleNews | |
| import pandas as pd | |
| import requests | |
| import gradio as gr | |
| import re | |
| from langchain.document_loaders import WebBaseLoader | |
| from langchain.chains.combine_documents.stuff import StuffDocumentsChain | |
| from transformers import pipeline | |
| import plotly.express as px | |
| from langchain.document_loaders.csv_loader import CSVLoader | |
| from langchain.chains.llm import LLMChain | |
| import yfinance as yf | |
| import pandas as pd | |
| import nltk | |
| from nltk.tokenize import sent_tokenize | |
| from openai import OpenAI | |
| class KeyValueExtractor: | |
| def __init__(self): | |
| """ | |
| Initialize the ContractSummarizer object. | |
| Parameters: | |
| pdf_file_path (str): The path to the input PDF file. | |
| """ | |
| self.model = "facebook/bart-large-mnli" | |
| self.client = OpenAI() | |
| def get_url(self,keyword): | |
| return f"https://finance.yahoo.com/quote/{keyword}?p={keyword}" | |
| def get_each_link_summary(self,url): | |
| loader = WebBaseLoader(url) | |
| docs = loader.load() | |
| text_splitter = CharacterTextSplitter.from_tiktoken_encoder( | |
| chunk_size=3000, chunk_overlap=200 | |
| ) | |
| # Split the documents into chunks | |
| split_docs = text_splitter.split_documents(docs) | |
| # Prepare the prompt template for summarization | |
| prompt_template = """The give text is Finance Stock Details for one company i want to get values for | |
| Previous Close : [value] | |
| Open : [value] | |
| Bid : [value] | |
| Ask : [value] | |
| Day's Range : [value] | |
| 52 Week Range : [value] | |
| Volume : [value] | |
| Avg. Volume : [value] | |
| Market Cap : [value] | |
| Beta (5Y Monthly) : [value] | |
| PE Ratio (TTM) : [value] | |
| EPS (TTM) : [value] | |
| Earnings Date : [value] | |
| Forward Dividend & Yield : [value] | |
| Ex-Dividend Date : [value] | |
| 1y Target Est : [value] | |
| these details form that and Write a abractive summary about those details: | |
| Given Text: {text} | |
| CONCISE SUMMARY:""" | |
| prompt = PromptTemplate.from_template(prompt_template) | |
| # Prepare the template for refining the summary with additional context | |
| refine_template = ( | |
| "Your job is to produce a final summary\n" | |
| "We have provided an existing summary up to a certain point: {existing_answer}\n" | |
| "We have the opportunity to refine the existing summary" | |
| "(only if needed) with some more context below.\n" | |
| "------------\n" | |
| "{text}\n" | |
| "------------\n" | |
| "Given the new context, refine the original summary" | |
| "If the context isn't useful, return the original summary." | |
| ) | |
| refine_prompt = PromptTemplate.from_template(refine_template) | |
| # Load the summarization chain using the ChatOpenAI language model | |
| chain = load_summarize_chain( | |
| llm = ChatOpenAI(temperature=0), | |
| chain_type="refine", | |
| question_prompt=prompt, | |
| refine_prompt=refine_prompt, | |
| return_intermediate_steps=True, | |
| input_key="input_documents", | |
| output_key="output_text", | |
| ) | |
| # Generate the refined summary using the loaded summarization chain | |
| result = chain({"input_documents": split_docs}, return_only_outputs=True) | |
| print(result["output_text"]) | |
| return result["output_text"] | |
| def one_day_summary(self,content) -> None: | |
| conversation = [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```."} | |
| ] | |
| # Call OpenAI GPT-3.5-turbo | |
| chat_completion = self.client.chat.completions.create( | |
| model = "gpt-3.5-turbo", | |
| messages = conversation, | |
| max_tokens=1000, | |
| temperature=0 | |
| ) | |
| response = chat_completion.choices[0].message.content | |
| return response | |
| # # Use OpenAI's Completion API to analyze the text and extract key-value pairs | |
| # response = openai.Completion.create( | |
| # engine="text-davinci-003", # You can choose a different engine as well | |
| # temperature = 0, | |
| # prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.", | |
| # max_tokens=1000 # You can adjust the length of the response | |
| # ) | |
| # # Extract and return the chatbot's reply | |
| # result = response['choices'][0]['text'].strip() | |
| # print(result) | |
| # return result | |
| def extract_key_value_pair(self,content) -> None: | |
| """ | |
| Extract key-value pairs from the refined summary. | |
| Prints the extracted key-value pairs. | |
| """ | |
| try: | |
| conversation = [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```."} | |
| ] | |
| # Call OpenAI GPT-3.5-turbo | |
| chat_completion = self.client.chat.completions.create( | |
| model = "gpt-3.5-turbo", | |
| messages = conversation, | |
| max_tokens=1000, | |
| temperature=0 | |
| ) | |
| response = chat_completion.choices[0].message.content | |
| return response | |
| # # Use OpenAI's Completion API to analyze the text and extract key-value pairs | |
| # response = openai.Completion.create( | |
| # engine="text-davinci-003", # You can choose a different engine as well | |
| # temperature = 0, | |
| # prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.", | |
| # max_tokens=1000 # You can adjust the length of the response | |
| # ) | |
| # # Extract and return the chatbot's reply | |
| # result = response['choices'][0]['text'].strip() | |
| # return result | |
| except Exception as e: | |
| # If an error occurs during the key-value extraction process, log the error | |
| logging.error(f"Error while extracting key-value pairs: {e}") | |
| print("Error:", e) | |
| def analyze_sentiment_for_graph(self, text): | |
| pipe = pipeline("zero-shot-classification", model=self.model) | |
| label=["Positive", "Negative", "Neutral"] | |
| result = pipe(text, label) | |
| sentiment_scores = { | |
| result['labels'][0]: result['scores'][0], | |
| result['labels'][1]: result['scores'][1], | |
| result['labels'][2]: result['scores'][2] | |
| } | |
| return sentiment_scores | |
| def display_graph(self,text): | |
| sentiment_scores = self.analyze_sentiment_for_graph(text) | |
| labels = sentiment_scores.keys() | |
| scores = sentiment_scores.values() | |
| fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"}) | |
| fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside') | |
| fig.update_layout(title="Sentiment Analysis",width=800) | |
| formatted_pairs = [] | |
| for key, value in sentiment_scores.items(): | |
| formatted_value = round(value, 2) # Round the value to two decimal places | |
| formatted_pairs.append(f"{key} : {formatted_value}") | |
| result_string = '\t'.join(formatted_pairs) | |
| return fig | |
| def get_finance_data(self,symbol): | |
| # Define the stock symbol and date range | |
| start_date = '2022-08-19' | |
| end_date = '2023-08-19' | |
| # Fetch historical OHLC data using yfinance | |
| data = yf.download(symbol, start=start_date, end=end_date) | |
| # Select only the OHLC columns | |
| ohlc_data = data[['Open', 'High', 'Low', 'Close']] | |
| csv_path = "ohlc_data.csv" | |
| # Save the OHLC data to a CSV file | |
| ohlc_data.to_csv(csv_path) | |
| return csv_path | |
| def csv_to_dataframe(self,csv_path): | |
| # Replace 'your_file.csv' with the actual path to your CSV file | |
| csv_file_path = csv_path | |
| # Read the CSV file into a DataFrame | |
| df = pd.read_csv(csv_file_path) | |
| # Now you can work with the 'df' DataFrame | |
| return df # Display the first few rows of the DataFrame | |
| def save_dataframe_in_text_file(self,df): | |
| output_file_path = 'output.txt' | |
| # Convert the DataFrame to a text file | |
| df.to_csv(output_file_path, sep='\t', index=False) | |
| return output_file_path | |
| def csv_loader(self,output_file_path): | |
| loader = UnstructuredFileLoader(output_file_path, strategy="fast") | |
| docs = loader.load() | |
| return docs | |
| def document_text_spilliter(self,docs): | |
| """ | |
| Split documents into chunks for efficient processing. | |
| Returns: | |
| List[str]: List of split document chunks. | |
| """ | |
| # Initialize the text splitter with specified chunk size and overlap | |
| text_splitter = CharacterTextSplitter.from_tiktoken_encoder( | |
| chunk_size=1000, chunk_overlap=200 | |
| ) | |
| # Split the documents into chunks | |
| split_docs = text_splitter.split_documents(docs) | |
| # Return the list of split document chunks | |
| return split_docs | |
| def change_bullet_points(self,text): | |
| nltk.download('punkt') # Download the sentence tokenizer data (only need to run this once) | |
| # Example passage | |
| passage = text | |
| # Tokenize the passage into sentences | |
| sentences = sent_tokenize(passage) | |
| bullet_string = "" | |
| # Print the extracted sentences | |
| for sentence in sentences: | |
| bullet_string+="* "+sentence+"\n" | |
| return bullet_string | |
| def one_year_summary(self,keyword): | |
| csv_path = self.get_finance_data(keyword) | |
| df = self.csv_to_dataframe(csv_path) | |
| output_file_path = self.save_dataframe_in_text_file(df) | |
| docs = self.csv_loader(output_file_path) | |
| split_docs = self.document_text_spilliter(docs) | |
| prompt_template = """Analyze the Financial Details and Write a abractive quick short summary how the company perform up and down,Bullish/Bearish of the following: | |
| {text} | |
| CONCISE SUMMARY:""" | |
| prompt = PromptTemplate.from_template(prompt_template) | |
| # Prepare the template for refining the summary with additional context | |
| refine_template = ( | |
| "Your job is to produce a final summary\n" | |
| "We have provided an existing summary up to a certain point: {existing_answer}\n" | |
| "We have the opportunity to refine the existing summary" | |
| "(only if needed) with some more context below.\n" | |
| "------------\n" | |
| "{text}\n" | |
| "------------\n" | |
| "Given the new context, refine the original summary" | |
| "If the context isn't useful, return the original summary." | |
| "10 line summary is enough" | |
| ) | |
| refine_prompt = PromptTemplate.from_template(refine_template) | |
| # Load the summarization chain using the ChatOpenAI language model | |
| chain = load_summarize_chain( | |
| llm = ChatOpenAI(temperature=0), | |
| chain_type="refine", | |
| question_prompt=prompt, | |
| refine_prompt=refine_prompt, | |
| return_intermediate_steps=True, | |
| input_key="input_documents", | |
| output_key="output_text", | |
| ) | |
| # Generate the refined summary using the loaded summarization chain | |
| result = chain({"input_documents": split_docs}, return_only_outputs=True) | |
| one_year_perfomance_summary = self.change_bullet_points(result["output_text"]) | |
| # Return the refined summary | |
| return one_year_perfomance_summary | |
| def main(self,keyword): | |
| clean_url = self.get_url(keyword) | |
| link_summary = self.get_each_link_summary(clean_url) | |
| clean_summary = self.one_day_summary(link_summary) | |
| key_value = self.extract_key_value_pair(clean_summary) | |
| return clean_summary, key_value | |
| def company_names(self,input_text): | |
| words = input_text.split("-") | |
| return words[1] | |
| def gradio_interface(self): | |
| with gr.Blocks(css="style.css",theme= 'karthikeyan-adople/hudsonhayes-gray') as app: | |
| gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'><center><h1 class ="center"> | |
| <img src="file=logo.png" height="110px" width="280px"></h1></center> | |
| <br><h1 style="color:#fff"> Finance Tool for Investors </h1></center>""") | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150, ): | |
| input_news = gr.Textbox(label="Company Name") | |
| with gr.Accordion("List_of_Companies", open = False): | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150 ): | |
| gr.Examples( | |
| [["Apple Inc. - AAPL"], ["Microsoft Corporation - MSFT"],["Amazon.com Inc. - AMZN"],["Facebook Inc. - FB"],["Tesla Inc. - TSLA"]], | |
| [input_news], | |
| input_news, | |
| fn=self.company_names, | |
| cache_examples=True, | |
| ) | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150): | |
| analyse = gr.Button("Analyse") | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=0.50, min_width=150): | |
| result_summary = gr.Textbox(label="Summary For Last Day Perfomance", lines = 12) | |
| with gr.Column(scale=0.50, min_width=150): | |
| key_value_pair_result = gr.Textbox(label="Discussed Topics", lines = 12) | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=0): | |
| plot_for_day =gr.Plot(label="Sentiment for Last Day", size=(500, 600)) | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150): | |
| analyse_sentiment = gr.Button("Analyse Sentiment For Last Day") | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150, ): | |
| one_year_summary = gr.Textbox(label="Summary For One Year Perfomance",lines = 12) | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150): | |
| one_year = gr.Button("Analyse One Year Summary") | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=0): | |
| plot_for_year =gr.Plot(label="Sentiment for One Year", size=(500, 600)) | |
| with gr.Row(elem_id="col-container"): | |
| with gr.Column(scale=1.0, min_width=150): | |
| analyse_sentiment_for_year = gr.Button("Analyse Sentiment For One Year") | |
| analyse.click(self.main, input_news, [result_summary,key_value_pair_result]) | |
| analyse_sentiment.click(self.display_graph,result_summary,[plot_for_day]) | |
| one_year.click(self.one_year_summary,input_news,one_year_summary) | |
| analyse_sentiment_for_year.click(self.display_graph,one_year_summary,[plot_for_year]) | |
| app.launch(debug=True) | |
| if __name__ == "__main__": | |
| text_process = KeyValueExtractor() | |
| text_process.gradio_interface() |