File size: 16,922 Bytes
5f3b20a
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
bd2e020
 
5f3b20a
 
bd2e020
5f3b20a
 
 
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
bd2e020
5f3b20a
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
 
 
bd2e020
5f3b20a
 
 
 
bd2e020
5f3b20a
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
 
bd2e020
5f3b20a
 
 
 
bd2e020
5f3b20a
bd2e020
5f3b20a
bd2e020
 
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
bd2e020
5f3b20a
 
bd2e020
5f3b20a
 
 
 
 
 
 
 
bd2e020
 
 
5f3b20a
bd2e020
 
5f3b20a
 
bd2e020
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import re
import glob
import time
from collections import defaultdict

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS

# PyMuPDF library
try:
    import fitz  # PyMuPDF
    PYMUPDF_AVAILABLE = True
    print("βœ… PyMuPDF library available")
except ImportError:
    PYMUPDF_AVAILABLE = False
    print("⚠️ PyMuPDF library is not installed. Install with: pip install PyMuPDF")

# PDF processing utilities
import pytesseract
from PIL import Image
from pdf2image import convert_from_path
import pdfplumber
from pymupdf4llm import LlamaMarkdownReader

# --------------------------------
# Log Output
# --------------------------------

def log(msg):
    print(f"[{time.strftime('%H:%M:%S')}] {msg}")

# --------------------------------
# Text Cleaning Function
# --------------------------------

def clean_text(text):
    return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text)

def apply_corrections(text):
    corrections = {
        'ΒΊΒ©': 'info', 'Ì': 'of', 'Β½': 'operation', 'Γƒ': '', 'Β©': '',
        'Ò€ℒ': "'", 'Ò€œ': '"', 'Ò€': '"'
    }
    for k, v in corrections.items():
        text = text.replace(k, v)
    return text

# --------------------------------
# HWPX Processing (Section-wise Processing Only)
# --------------------------------

def load_hwpx(file_path):
    """Loading HWPX file (using XML parsing method only)"""
    import zipfile
    import xml.etree.ElementTree as ET
    import chardet
    
    log(f"πŸ“₯ Starting HWPX section-wise processing: {file_path}")
    start = time.time()
    documents = []
    
    try:
        with zipfile.ZipFile(file_path, 'r') as zip_ref:
            file_list = zip_ref.namelist()
            section_files = [f for f in file_list 
                           if f.startswith('Contents/section') and f.endswith('.xml')]
            section_files.sort()  # Sort by section0.xml, section1.xml order
            
            log(f"πŸ“„ Found section files: {len(section_files)}")
            
            for section_idx, section_file in enumerate(section_files):
                with zip_ref.open(section_file) as xml_file:
                    raw = xml_file.read()
                    encoding = chardet.detect(raw)['encoding'] or 'utf-8'
                    try:
                        text = raw.decode(encoding)
                    except UnicodeDecodeError:
                        text = raw.decode("cp949", errors="replace")

                    tree = ET.ElementTree(ET.fromstring(text))
                    root = tree.getroot()
                    
                    # Find text without namespace
                    t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't']
                    body_text = ""
                    for elem in t_elements:
                        if elem.text:
                            body_text += clean_text(elem.text) + " "

                    # Set page metadata to empty
                    page_value = ""

                    if body_text.strip():
                        documents.append(Document(
                            page_content=apply_corrections(body_text),
                            metadata={
                                "source": file_path,
                                "filename": os.path.basename(file_path),
                                "type": "hwpx_body",
                                "page": page_value,
                                "total_sections": len(section_files)
                            }
                        ))
                        log(f"βœ… Section text extraction complete (chars: {len(body_text)})")

                    # Find tables
                    table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table']
                    if table_elements:
                        table_text = ""
                        for table_idx, table in enumerate(table_elements):
                            table_text += f"[Table {table_idx + 1}]\n"
                            rows = [elem for elem in table.iter() if elem.tag.endswith('}tr') or elem.tag == 'tr']
                            for row in rows:
                                row_text = []
                                cells = [elem for elem in row.iter() if elem.tag.endswith('}tc') or elem.tag == 'tc']
                                for cell in cells:
                                    cell_texts = []
                                    for t_elem in cell.iter():
                                        if (t_elem.tag.endswith('}t') or t_elem.tag == 't') and t_elem.text:
                                            cell_texts.append(clean_text(t_elem.text))
                                    row_text.append(" ".join(cell_texts))
                                if row_text:
                                    table_text += "\t".join(row_text) + "\n"
                        
                        if table_text.strip():
                            documents.append(Document(
                                page_content=apply_corrections(table_text),
                                metadata={
                                    "source": file_path,
                                    "filename": os.path.basename(file_path),
                                    "type": "hwpx_table",
                                    "page": page_value,
                                    "total_sections": len(section_files)
                                }
                            ))
                            log(f"πŸ“Š Table extraction complete")

                    # Find images
                    if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']:
                        documents.append(Document(
                            page_content="[Image included]",
                            metadata={
                                "source": file_path,
                                "filename": os.path.basename(file_path),
                                "type": "hwpx_image",
                                "page": page_value,
                                "total_sections": len(section_files)
                            }
                        ))
                        log(f"πŸ–ΌοΈ Image found")
                        
    except Exception as e:
        log(f"❌ HWPX processing error: {e}")

    duration = time.time() - start
    
    # Print summary of document information
    if documents:
        log(f"πŸ“‹ Number of extracted documents: {len(documents)}")
    
    log(f"βœ… HWPX processing complete: {file_path} ⏱️ {duration:.2f}s, total {len(documents)} documents")
    return documents

# --------------------------------
# PDF Processing Functions (same as before)
# --------------------------------

def run_ocr_on_image(image: Image.Image, lang='kor+eng'):
    return pytesseract.image_to_string(image, lang=lang)

def extract_images_with_ocr(pdf_path, lang='kor+eng'):
    try:
        images = convert_from_path(pdf_path)
        page_ocr_data = {}
        for idx, img in enumerate(images):
            page_num = idx + 1
            text = run_ocr_on_image(img, lang=lang)
            if text.strip():
                page_ocr_data[page_num] = text.strip()
        return page_ocr_data
    except Exception as e:
        print(f"❌ Image OCR failed: {e}")
        return {}

def extract_tables_with_pdfplumber(pdf_path):
    page_table_data = {}
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for i, page in enumerate(pdf.pages):
                page_num = i + 1
                tables = page.extract_tables()
                table_text = ""
                for t_index, table in enumerate(tables):
                    if table:
                        table_text += f"[Table {t_index+1}]\n"
                        for row in table:
                            row_text = "\t".join(cell if cell else "" for cell in row)
                            table_text += row_text + "\n"
                if table_text.strip():
                    page_table_data[page_num] = table_text.strip()
        return page_table_data
    except Exception as e:
        print(f"❌ Table extraction failed: {e}")
        return {}

def extract_body_text_with_pages(pdf_path):
    page_body_data = {}
    try:
        pdf_processor = LlamaMarkdownReader()
        docs = pdf_processor.load_data(file_path=pdf_path)
        
        combined_text = ""
        for d in docs:
            if isinstance(d, dict) and "text" in d:
                combined_text += d["text"]
            elif hasattr(d, "text"):
                combined_text += d.text
        
        if combined_text.strip():
            chars_per_page = 2000
            start = 0
            page_num = 1
            
            while start < len(combined_text):
                end = start + chars_per_page
                if end > len(combined_text):
                    end = len(combined_text)
                
                page_text = combined_text[start:end]
                if page_text.strip():
                    page_body_data[page_num] = page_text.strip()
                    page_num += 1
                
                if end == len(combined_text):
                    break
                start = end - 100
                
    except Exception as e:
        print(f"❌ Body extraction failed: {e}")
    
    return page_body_data

def load_pdf_with_metadata(pdf_path):
    """Extracts page-specific information from a PDF file"""
    log(f"πŸ“‘ Starting PDF page-wise processing: {pdf_path}")
    start = time.time()

    # First, check the actual number of pages using PyPDFLoader
    try:
        from langchain_community.document_loaders import PyPDFLoader
        loader = PyPDFLoader(pdf_path)
        pdf_pages = loader.load()
        actual_total_pages = len(pdf_pages)
        log(f"πŸ“„ Actual page count as verified by PyPDFLoader: {actual_total_pages}")
    except Exception as e:
        log(f"❌ PyPDFLoader page count verification failed: {e}")
        actual_total_pages = 1

    try:
        page_tables = extract_tables_with_pdfplumber(pdf_path)
    except Exception as e:
        page_tables = {}
        print(f"❌ Table extraction failed: {e}")

    try:
        page_ocr = extract_images_with_ocr(pdf_path)
    except Exception as e:
        page_ocr = {}
        print(f"❌ Image OCR failed: {e}")

    try:
        page_body = extract_body_text_with_pages(pdf_path)
    except Exception as e:
        page_body = {}
        print(f"❌ Body extraction failed: {e}")

    duration = time.time() - start
    log(f"βœ… PDF page-wise processing complete: {pdf_path} ⏱️ {duration:.2f}s")

    # Set the total number of pages based on the actual number of pages
    all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys())
    if all_pages:
        max_extracted_page = max(all_pages)
        # Use the greater of the actual and extracted page numbers
        total_pages = max(actual_total_pages, max_extracted_page)
    else:
        total_pages = actual_total_pages

    log(f"πŸ“Š Final total page count set to: {total_pages}")

    docs = []
    
    for page_num in sorted(all_pages):
        if page_num in page_tables and page_tables[page_num].strip():
            docs.append(Document(
                page_content=clean_text(apply_corrections(page_tables[page_num])),
                metadata={
                    "source": pdf_path,
                    "filename": os.path.basename(pdf_path),
                    "type": "table",
                    "page": page_num,
                    "total_pages": total_pages
                }
            ))
            log(f"πŸ“Š Page {page_num}: Table extraction complete")
        
        if page_num in page_body and page_body[page_num].strip():
            docs.append(Document(
                page_content=clean_text(apply_corrections(page_body[page_num])),
                metadata={
                    "source": pdf_path,
                    "filename": os.path.basename(pdf_path),
                    "type": "body",
                    "page": page_num,
                    "total_pages": total_pages
                }
            ))
            log(f"πŸ“„ Page {page_num}: Body extraction complete")
        
        if page_num in page_ocr and page_ocr[page_num].strip():
            docs.append(Document(
                page_content=clean_text(apply_corrections(page_ocr[page_num])),
                metadata={
                    "source": pdf_path,
                    "filename": os.path.basename(pdf_path),
                    "type": "ocr",
                    "page": page_num,
                    "total_pages": total_pages
                }
            ))
            log(f"πŸ–ΌοΈ Page {page_num}: OCR extraction complete")
    
    if not docs:
        docs.append(Document(
            page_content="[Content extraction failed]",
            metadata={
                "source": pdf_path,
                "filename": os.path.basename(pdf_path),
                "type": "error",
                "page": 1,
                "total_pages": total_pages
            }
        ))
    
    # Print summary of page information
    if docs:
        page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')]
        if page_numbers:
            log(f"πŸ“‹ Extracted page range: {min(page_numbers)} ~ {max(page_numbers)}")
    
    log(f"πŸ“Š PDF documents with extracted pages: {len(docs)} documents (total {total_pages} pages)")
    return docs

# --------------------------------
# Document Loading and Splitting
# --------------------------------

def load_documents(folder_path):
    documents = []

    for file in glob.glob(os.path.join(folder_path, "*.hwpx")):
        log(f"πŸ“„ HWPX file found: {file}")
        docs = load_hwpx(file)
        documents.extend(docs)

    for file in glob.glob(os.path.join(folder_path, "*.pdf")):
        log(f"πŸ“„ PDF file found: {file}")
        documents.extend(load_pdf_with_metadata(file))

    log(f"πŸ“š Document loading complete! Total documents: {len(documents)}")
    return documents

def split_documents(documents, chunk_size=800, chunk_overlap=100):
    log("πŸ”ͺ Starting chunk splitting")
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
        length_function=len
    )
    chunks = []
    for doc in documents:
        split = splitter.split_text(doc.page_content)
        for i, chunk in enumerate(split):
            enriched_chunk = f"passage: {chunk}"
            chunks.append(Document(
                page_content=enriched_chunk,
                metadata={**doc.metadata, "chunk_index": i}
            ))
    log(f"βœ… Chunk splitting complete: Created {len(chunks)} chunks")
    return chunks

# --------------------------------
# Main Execution
# --------------------------------

if __name__ == "__main__":
    folder = "dataset_test"
    log("πŸš€ PyMuPDF-based document processing started")
    docs = load_documents(folder)
    log("πŸ“¦ Document loading complete")

    # Page information check
    log("πŸ“„ Page information summary:")
    page_info = {}
    for doc in docs:
        source = doc.metadata.get('source', 'unknown')
        page = doc.metadata.get('page', 'unknown')
        doc_type = doc.metadata.get('type', 'unknown')
        
        if source not in page_info:
            page_info[source] = {'pages': set(), 'types': set()}
        page_info[source]['pages'].add(page)
        page_info[source]['types'].add(doc_type)
    
    for source, info in page_info.items():
        max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown'
        log(f"  πŸ“„ {os.path.basename(source)}: {max_page} pages, type: {info['types']}")

    chunks = split_documents(docs)
    log("πŸ’‘ E5-Large-Instruct embedding preparation")
    embedding_model = HuggingFaceEmbeddings(
        model_name="intfloat/e5-large-v2",
        model_kwargs={"device": "cuda"}
    )

    vectorstore = FAISS.from_documents(chunks, embedding_model)
    vectorstore.save_local("vector_db")

    log(f"πŸ“Š Total number of documents: {len(docs)}")
    log(f"πŸ”— Total number of chunks: {len(chunks)}")
    log("βœ… FAISS save complete: vector_db")
    
    # Sample output with page information
    log("\nπŸ“‹ Sample including actual page information:")
    for i, chunk in enumerate(chunks[:5]):
        meta = chunk.metadata
        log(f"  Chunk {i+1}: {meta.get('type')} | Page {meta.get('page')} | {os.path.basename(meta.get('source', 'unknown'))}")