open-webui-rag-system / concat_vector_store.py
hugging2021's picture
Update concat_vector_store.py
3c9ce69 verified
import os
from langchain.schema.document import Document
from e5_embeddings import E5Embeddings
from langchain_community.vectorstores import FAISS
from document_processor_image import load_documents, split_documents # This function is required!
# Path configuration
NEW_FOLDER = "new_documents" # Folder containing the new documents
VECTOR_STORE_PATH = "vector_db"
# 1. Loading the embedding model
def get_embeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cuda"):
return E5Embeddings(
model_name=model_name,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': True}
)
# 2. Load existing vector store
def load_vector_store(embeddings, load_path="vector_db"):
if not os.path.exists(load_path):
raise FileNotFoundError(f"Cannot find vector store: {load_path}")
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True)
# 3. Embed and Add New Documents
def add_new_documents_to_vector_store(new_folder, vectorstore, embeddings):
print(f"Loading new documents: {new_folder}")
new_docs = load_documents(new_folder)
new_chunks = split_documents(new_docs) #, chunk_size=800, chunk_overlap=100
#Es fehlen noch die Parameter chunk_size=800, chunk_overlap=100, aber ohne Kenntnis der Funktionen, kann ich diese nicht sinnvoll befüllen
print(f"Number of new chunks: {len(new_chunks)}")
print(f"Vector count before addition: {vectorstore.index.ntotal}")
vectorstore.add_documents(new_chunks)
print(f"Vector count after addition: {vectorstore.index.ntotal}")
print("New documents have been added to the vector store.")
# 4. Main Execution
if __name__ == "__main__":
embeddings = get_embeddings()
vectorstore = load_vector_store(embeddings, VECTOR_STORE_PATH)
add_new_documents_to_vector_store(NEW_FOLDER, vectorstore, embeddings)
vectorstore.save_local(VECTOR_STORE_PATH)
print(f"Vector store save completed: {VECTOR_STORE_PATH}")