Spaces:
Runtime error
Runtime error
import os | |
import glob | |
from langchain.schema.document import Document | |
from e5_embeddings import E5Embeddings | |
from langchain_community.vectorstores import FAISS | |
from document_processor import load_pdf_with_pymupdf, split_documents | |
# Path configuration | |
FOLDER = "cleaned_pdfs" # Folder containing the cleaned PDFs | |
VECTOR_STORE_PATH = "vector_db" | |
# 1. Load the embedding model | |
def get_embeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cuda"): | |
return E5Embeddings( | |
model_name=model_name, | |
model_kwargs={'device': device}, | |
encode_kwargs={'normalize_embeddings': True} | |
) | |
# 2. Load existing vector store | |
def load_vector_store(embeddings, load_path=VECTOR_STORE_PATH): | |
if not os.path.exists(load_path): | |
raise FileNotFoundError(f"Cannot find vector store: {load_path}") | |
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True) | |
# 3. Embed only the cleaned PDFs | |
def embed_cleaned_pdfs(folder, vectorstore, embeddings): | |
pattern = os.path.join(folder, "cleaned*.pdf") | |
pdf_files = glob.glob(pattern) | |
print(f"Number of target PDFs: {len(pdf_files)}") | |
new_documents = [] | |
for pdf_path in pdf_files: | |
print(f"Processing: {pdf_path}") | |
text = load_pdf_with_pymupdf(pdf_path) | |
if text.strip(): | |
new_documents.append(Document(page_content=text, metadata={"source": pdf_path})) | |
print(f"Number of documents: {len(new_documents)}") | |
chunks = split_documents(new_documents, chunk_size=300, chunk_overlap=50) | |
print(f"Number of chunks: {len(chunks)}") | |
print(f"Vector count before addition: {vectorstore.index.ntotal}") | |
vectorstore.add_documents(chunks) | |
print(f"Vector count after addition: {vectorstore.index.ntotal}") | |
vectorstore.save_local(VECTOR_STORE_PATH) | |
print(f"Save completed: {VECTOR_STORE_PATH}") | |
# Execution | |
if __name__ == "__main__": | |
embeddings = get_embeddings() | |
vectorstore = load_vector_store(embeddings) | |
embed_cleaned_pdfs(FOLDER, vectorstore, embeddings) |