open-webui-rag-system / rag_server.py
hugging2021's picture
Update rag_server.py
36daa1c verified
import gradio as gr
import os
import requests
from io import BytesIO
from PyPDF2 import PdfReader
from tempfile import NamedTemporaryFile
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from huggingface_hub import InferenceClient
from gradio.exceptions import Error
from transformers import AutoModel
import streamlit as st
# --- Konfiguration ---
os.environ["HF_HOME"] = "/app/hf_cache" # Verwenden Sie einen absoluten Pfad innerhalb des Containers und erzwingen den Cache!
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
MODEL_NAME = "dannyk97/mistral-screenplay-model"
# --- Hilfsfunktionen ---
def query_huggingface_inference_endpoints(prompt):
"""
Stellt eine Anfrage an die Hugging Face Inference API.
"""
try:
client = InferenceClient(token=HF_API_TOKEN)
result = client.text_generation(prompt, model=MODEL_NAME)
return result
except Exception as e:
return f"Fehler bei der Anfrage an Hugging Face API: {e}"
# Function to download PDF from Google Drive
def download_pdf_from_drive(drive_link):
file_id = drive_link.split('/d/')[1].split('/')[0]
download_url = f"https://drive.google.com/uc?id={file_id}&export=download"
response = requests.get(download_url)
if response.status_code == 200:
return BytesIO(response.content)
else:
raise Exception("Failed to download the PDF file from Google Drive.")
# Function to extract text from a PDF
def extract_text_from_pdf(pdf_stream):
pdf_reader = PdfReader(pdf_stream)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split text into chunks
def chunk_text(text, chunk_size=500, chunk_overlap=50):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
return text_splitter.split_text(text)
def create_embeddings_and_store(chunks):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
return vector_db
# Function to query the vector database and interact with Hugging Face Inference API
def query_vector_db(query, vector_db):
# Retrieve relevant documents
docs = vector_db.similarity_search(query, k=3)
context = "\n".join([doc.page_content for doc in docs])
# Interact with the Text Generation API
prompt = f"Nutze diesen Kontext um die Frage zu beantworten: {context}\nFrage: {query}"
try:
output = query_huggingface_inference_endpoints(prompt)
return output
except Exception as e:
return f"FEHLER: {str(e)}"
# Streamlit app
st.title("RAG-Based Application with Google Drive Support")
# Predefined list of Google Drive links - HIER DEFINIERT!
drive_links = [
"https://drive.google.com/file/d/1PW8PJQC1EqYpsk8AhqrE4OS5cy57sqJ4/view?usp=drive_link"
# Add more links here as needed
]
st.write("Processing the predefined Google Drive links...")
all_chunks = []
# Process each predefined Google Drive link
for link in drive_links:
try:
st.write(f"Processing link: {link}")
# Download PDF
pdf_stream = download_pdf_from_drive(link)
st.write("PDF Downloaded Successfully!")
# Extract text
text = extract_text_from_pdf(pdf_stream)
st.write("PDF Text Extracted Successfully!")
# Chunk text
chunks = chunk_text(text)
st.write(f"Created {len(chunks)} text chunks.")
all_chunks.extend(chunks)
except Exception as e:
st.write(f"Error processing link {link}: {e}")
if all_chunks:
# Generate embeddings and store in FAISS
vector_db = create_embeddings_and_store(all_chunks)
st.write("Embeddings Generated and Stored Successfully!")
# User query input
user_query = st.text_input("Enter your query:")
if user_query:
response = query_vector_db(user_query, vector_db)
st.write("Response from LLM:")
st.write(response)