import os import argparse import logging import time from collections import defaultdict from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_core.documents import Document from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS # PyMuPDF library try: import fitz # PyMuPDF PYMUPDF_AVAILABLE = True print("✅ PyMuPDF library available") except ImportError: PYMUPDF_AVAILABLE = False print("⚠️ PyMuPDF library is not installed. Install with: pip install PyMuPDF") # -------------------------------- # Log Output # -------------------------------- def log(msg): print(f"[{time.strftime('%H:%M:%S')}] {msg}") # -------------------------------- # Text Cleaning Function # -------------------------------- def clean_text(text): return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text) def apply_corrections(text): corrections = { 'º©': 'info', 'Ì': 'of', '½': 'operation', 'Ã': '', '©': '', '’': "'", '“': '"', 'â€': '"' } for k, v in corrections.items(): text = text.replace(k, v) return text # -------------------------------- # Load the embedding model def get_embeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cuda"): return HuggingFaceEmbeddings( model_name=model_name, model_kwargs={'device': device}, encode_kwargs={'normalize_embeddings': True} ) def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=16): if not documents: raise ValueError("No documents found. Check if documents are loaded correctly.") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] # Split into batches batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)] metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)] print(f"Processing {len(batches)} batches with size {batch_size}") print(f"Initializing vector store with batch 1/{len(batches)}") # Use from_documents instead of from_texts (to prevent length issues) first_docs = [ Document(page_content=text, metadata=meta) for text, meta in zip(batches[0], metadata_batches[0]) ] vectorstore = FAISS.from_documents(first_docs, embeddings) # Add remaining batches for i in tqdm(range(1, len(batches)), desc="Processing batches"): try: docs_batch = [ Document(page_content=text, metadata=meta) for text, meta in zip(batches[i], metadata_batches[i]) ] vectorstore.add_documents(docs_batch) if i % 10 == 0: temp_save_path = f"{save_path}_temp" os.makedirs(os.path.dirname(temp_save_path) if os.path.dirname(temp_save_path) else '.', exist_ok=True) vectorstore.save_local(temp_save_path) print(f"Temporary vector store saved to {temp_save_path} after batch {i}") except Exception as e: print(f"Error processing batch {i}: {e}") error_save_path = f"{save_path}_error_at_batch_{i}" os.makedirs(os.path.dirname(error_save_path) if os.path.dirname(error_save_path) else '.', exist_ok=True) vectorstore.save_local(error_save_path) print(f"Partial vector store saved to {error_save_path}") raise os.makedirs(os.path.dirname(save_path) if os.path.dirname(save_path) else '.', exist_ok=True) vectorstore.save_local(save_path) print(f"Vector store saved to {save_path}") return vectorstore def load_vector_store(embeddings, load_path="vector_db"): if not os.path.exists(load_path): raise FileNotFoundError(f"Cannot find vector store: {load_path}") return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Builds a vector store") parser.add_argument("--folder", type=str, default="dataset", help="Path to the folder containing the documents") parser.add_argument("--save_path", type=str, default="vector_db", help="Path to save the vector store") parser.add_argument("--batch_size", type=int, default=16, help="Batch size") parser.add_argument("--model_name", type=str, default="sentence-transformers/all-MiniLM-L6-v2", help="Name of the embedding model") parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device to use ('cuda' or 'cpu')") args = parser.parse_args() # Import the document processing module from document_processor import load_documents, split_documents # Load and split documents documents = load_documents(args.folder) chunks = split_documents(documents, chunk_size=800, chunk_overlap=100) # Load the embedding model embeddings = get_embeddings(model_name=args.model_name, device=args.device) # Build the vector store build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size)