import os import re import glob import time from collections import defaultdict from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_core.documents import Document from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS # PyMuPDF library try: import fitz # PyMuPDF PYMUPDF_AVAILABLE = True print("✅ PyMuPDF library available") except ImportError: PYMUPDF_AVAILABLE = False print("⚠️ PyMuPDF library is not installed. Install with: pip install PyMuPDF") # PDF processing utilities import pytesseract from PIL import Image from pdf2image import convert_from_path import pdfplumber from pymupdf4llm import LlamaMarkdownReader # -------------------------------- # Log Output # -------------------------------- def log(msg): print(f"[{time.strftime('%H:%M:%S')}] {msg}") # -------------------------------- # Text Cleaning Function # -------------------------------- def clean_text(text): return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text) def apply_corrections(text): corrections = { 'º©': 'info', 'Ì': 'of', '½': 'operation', 'Ã': '', '©': '', '’': "'", '“': '"', 'â€': '"' } for k, v in corrections.items(): text = text.replace(k, v) return text # -------------------------------- # HWPX Processing (Section-wise Processing Only) # -------------------------------- def load_hwpx(file_path): """Loading HWPX file (using XML parsing method only)""" import zipfile import xml.etree.ElementTree as ET import chardet log(f"📥 Starting HWPX section-wise processing: {file_path}") start = time.time() documents = [] try: with zipfile.ZipFile(file_path, 'r') as zip_ref: file_list = zip_ref.namelist() section_files = [f for f in file_list if f.startswith('Contents/section') and f.endswith('.xml')] section_files.sort() # Sort by section0.xml, section1.xml order log(f"📄 Found section files: {len(section_files)}") for section_idx, section_file in enumerate(section_files): with zip_ref.open(section_file) as xml_file: raw = xml_file.read() encoding = chardet.detect(raw)['encoding'] or 'utf-8' try: text = raw.decode(encoding) except UnicodeDecodeError: text = raw.decode("cp949", errors="replace") tree = ET.ElementTree(ET.fromstring(text)) root = tree.getroot() # Find text without namespace t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't'] body_text = "" for elem in t_elements: if elem.text: body_text += clean_text(elem.text) + " " # Set page metadata to empty page_value = "" if body_text.strip(): documents.append(Document( page_content=apply_corrections(body_text), metadata={ "source": file_path, "filename": os.path.basename(file_path), "type": "hwpx_body", "page": page_value, "total_sections": len(section_files) } )) log(f"✅ Section text extraction complete (chars: {len(body_text)})") # Find tables table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table'] if table_elements: table_text = "" for table_idx, table in enumerate(table_elements): table_text += f"[Table {table_idx + 1}]\n" rows = [elem for elem in table.iter() if elem.tag.endswith('}tr') or elem.tag == 'tr'] for row in rows: row_text = [] cells = [elem for elem in row.iter() if elem.tag.endswith('}tc') or elem.tag == 'tc'] for cell in cells: cell_texts = [] for t_elem in cell.iter(): if (t_elem.tag.endswith('}t') or t_elem.tag == 't') and t_elem.text: cell_texts.append(clean_text(t_elem.text)) row_text.append(" ".join(cell_texts)) if row_text: table_text += "\t".join(row_text) + "\n" if table_text.strip(): documents.append(Document( page_content=apply_corrections(table_text), metadata={ "source": file_path, "filename": os.path.basename(file_path), "type": "hwpx_table", "page": page_value, "total_sections": len(section_files) } )) log(f"📊 Table extraction complete") # Find images if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']: documents.append(Document( page_content="[Image included]", metadata={ "source": file_path, "filename": os.path.basename(file_path), "type": "hwpx_image", "page": page_value, "total_sections": len(section_files) } )) log(f"🖼️ Image found") except Exception as e: log(f"❌ HWPX processing error: {e}") duration = time.time() - start # Print summary of document information if documents: log(f"📋 Number of extracted documents: {len(documents)}") log(f"✅ HWPX processing complete: {file_path} ⏱️ {duration:.2f}s, total {len(documents)} documents") return documents # -------------------------------- # PDF Processing Functions (same as before) # -------------------------------- def run_ocr_on_image(image: Image.Image, lang='kor+eng'): return pytesseract.image_to_string(image, lang=lang) def extract_images_with_ocr(pdf_path, lang='kor+eng'): try: images = convert_from_path(pdf_path) page_ocr_data = {} for idx, img in enumerate(images): page_num = idx + 1 text = run_ocr_on_image(img, lang=lang) if text.strip(): page_ocr_data[page_num] = text.strip() return page_ocr_data except Exception as e: print(f"❌ Image OCR failed: {e}") return {} def extract_tables_with_pdfplumber(pdf_path): page_table_data = {} try: with pdfplumber.open(pdf_path) as pdf: for i, page in enumerate(pdf.pages): page_num = i + 1 tables = page.extract_tables() table_text = "" for t_index, table in enumerate(tables): if table: table_text += f"[Table {t_index+1}]\n" for row in table: row_text = "\t".join(cell if cell else "" for cell in row) table_text += row_text + "\n" if table_text.strip(): page_table_data[page_num] = table_text.strip() return page_table_data except Exception as e: print(f"❌ Table extraction failed: {e}") return {} def extract_body_text_with_pages(pdf_path): page_body_data = {} try: pdf_processor = LlamaMarkdownReader() docs = pdf_processor.load_data(file_path=pdf_path) combined_text = "" for d in docs: if isinstance(d, dict) and "text" in d: combined_text += d["text"] elif hasattr(d, "text"): combined_text += d.text if combined_text.strip(): chars_per_page = 2000 start = 0 page_num = 1 while start < len(combined_text): end = start + chars_per_page if end > len(combined_text): end = len(combined_text) page_text = combined_text[start:end] if page_text.strip(): page_body_data[page_num] = page_text.strip() page_num += 1 if end == len(combined_text): break start = end - 100 except Exception as e: print(f"❌ Body extraction failed: {e}") return page_body_data def load_pdf_with_metadata(pdf_path): """Extracts page-specific information from a PDF file""" log(f"📑 Starting PDF page-wise processing: {pdf_path}") start = time.time() # First, check the actual number of pages using PyPDFLoader try: from langchain_community.document_loaders import PyPDFLoader loader = PyPDFLoader(pdf_path) pdf_pages = loader.load() actual_total_pages = len(pdf_pages) log(f"📄 Actual page count as verified by PyPDFLoader: {actual_total_pages}") except Exception as e: log(f"❌ PyPDFLoader page count verification failed: {e}") actual_total_pages = 1 try: page_tables = extract_tables_with_pdfplumber(pdf_path) except Exception as e: page_tables = {} print(f"❌ Table extraction failed: {e}") try: page_ocr = extract_images_with_ocr(pdf_path) except Exception as e: page_ocr = {} print(f"❌ Image OCR failed: {e}") try: page_body = extract_body_text_with_pages(pdf_path) except Exception as e: page_body = {} print(f"❌ Body extraction failed: {e}") duration = time.time() - start log(f"✅ PDF page-wise processing complete: {pdf_path} ⏱️ {duration:.2f}s") # Set the total number of pages based on the actual number of pages all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys()) if all_pages: max_extracted_page = max(all_pages) # Use the greater of the actual and extracted page numbers total_pages = max(actual_total_pages, max_extracted_page) else: total_pages = actual_total_pages log(f"📊 Final total page count set to: {total_pages}") docs = [] for page_num in sorted(all_pages): if page_num in page_tables and page_tables[page_num].strip(): docs.append(Document( page_content=clean_text(apply_corrections(page_tables[page_num])), metadata={ "source": pdf_path, "filename": os.path.basename(pdf_path), "type": "table", "page": page_num, "total_pages": total_pages } )) log(f"📊 Page {page_num}: Table extraction complete") if page_num in page_body and page_body[page_num].strip(): docs.append(Document( page_content=clean_text(apply_corrections(page_body[page_num])), metadata={ "source": pdf_path, "filename": os.path.basename(pdf_path), "type": "body", "page": page_num, "total_pages": total_pages } )) log(f"📄 Page {page_num}: Body extraction complete") if page_num in page_ocr and page_ocr[page_num].strip(): docs.append(Document( page_content=clean_text(apply_corrections(page_ocr[page_num])), metadata={ "source": pdf_path, "filename": os.path.basename(pdf_path), "type": "ocr", "page": page_num, "total_pages": total_pages } )) log(f"🖼️ Page {page_num}: OCR extraction complete") if not docs: docs.append(Document( page_content="[Content extraction failed]", metadata={ "source": pdf_path, "filename": os.path.basename(pdf_path), "type": "error", "page": 1, "total_pages": total_pages } )) # Print summary of page information if docs: page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')] if page_numbers: log(f"📋 Extracted page range: {min(page_numbers)} ~ {max(page_numbers)}") log(f"📊 PDF documents with extracted pages: {len(docs)} documents (total {total_pages} pages)") return docs # -------------------------------- # Document Loading and Splitting # -------------------------------- def load_documents(folder_path): documents = [] for file in glob.glob(os.path.join(folder_path, "*.hwpx")): log(f"📄 HWPX file found: {file}") docs = load_hwpx(file) documents.extend(docs) for file in glob.glob(os.path.join(folder_path, "*.pdf")): log(f"📄 PDF file found: {file}") documents.extend(load_pdf_with_metadata(file)) log(f"📚 Document loading complete! Total documents: {len(documents)}") return documents def split_documents(documents, chunk_size=800, chunk_overlap=100): log("🔪 Starting chunk splitting") splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len ) chunks = [] for doc in documents: split = splitter.split_text(doc.page_content) for i, chunk in enumerate(split): enriched_chunk = f"passage: {chunk}" chunks.append(Document( page_content=enriched_chunk, metadata={**doc.metadata, "chunk_index": i} )) log(f"✅ Chunk splitting complete: Created {len(chunks)} chunks") return chunks # -------------------------------- # Main Execution # -------------------------------- if __name__ == "__main__": folder = "dataset_test" log("🚀 PyMuPDF-based document processing started") docs = load_documents(folder) log("📦 Document loading complete") # Page information check log("📄 Page information summary:") page_info = {} for doc in docs: source = doc.metadata.get('source', 'unknown') page = doc.metadata.get('page', 'unknown') doc_type = doc.metadata.get('type', 'unknown') if source not in page_info: page_info[source] = {'pages': set(), 'types': set()} page_info[source]['pages'].add(page) page_info[source]['types'].add(doc_type) for source, info in page_info.items(): max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown' log(f" 📄 {os.path.basename(source)}: {max_page} pages, type: {info['types']}") chunks = split_documents(docs) log("💡 E5-Large-Instruct embedding preparation") embedding_model = HuggingFaceEmbeddings( model_name="intfloat/e5-large-v2", model_kwargs={"device": "cuda"} ) vectorstore = FAISS.from_documents(chunks, embedding_model) vectorstore.save_local("vector_db") log(f"📊 Total number of documents: {len(docs)}") log(f"🔗 Total number of chunks: {len(chunks)}") log("✅ FAISS save complete: vector_db") # Sample output with page information log("\n📋 Sample including actual page information:") for i, chunk in enumerate(chunks[:5]): meta = chunk.metadata log(f" Chunk {i+1}: {meta.get('type')} | Page {meta.get('page')} | {os.path.basename(meta.get('source', 'unknown'))}")