File size: 19,407 Bytes
7d1803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b7952b
7d1803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# -*- coding: utf-8 -*-
"""PPAS Model.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1COA86IG7byZ4AtM_kfAj3NY0q0PZ7pLb

# **Predictive Performance Analysis for Students**
This notebook leverages a state-of-the-art machine learning pipeline to predict student performance and assess risk levels. Follow these steps:

Predict Grade: Enter student data to get the predicted grade and risk level.
Run Scenario Simulation: Simulate interventions by increasing a selected feature to see the impact on the predicted grade.

Step 0: Data Generation

import pandas as pd
import numpy as np

# Set random seed for reproducibility
np.random.seed(42)

# Generate synthetic dataset
n_students = 1000
data = {
    'Student ID': [f'S{i:03d}' for i in range(1, n_students + 1)],
    'Student Name': [f'Student {i}' for i in range(1, n_students + 1)],
    'Total Attendance (%)': np.random.uniform(50, 100, n_students),
    'Marks in Previous Exams (%)': np.random.uniform(40, 100, n_students),
    'Assignment Submission Rate (%)': np.random.uniform(50, 100, n_students),
    'Engagement Metrics (%)': np.random.uniform(50, 100, n_students),
    'Historical GPA': np.random.uniform(2.0, 4.0, n_students)
}

# Create DataFrame
df = pd.DataFrame(data)

# Generate Final Grade as a function of features with noise
df['Final Grade (%)'] = (
    0.2 * df['Total Attendance (%)'] +
    0.3 * df['Marks in Previous Exams (%)'] +
    0.2 * df['Assignment Submission Rate (%)'] +
    0.2 * df['Engagement Metrics (%)'] +
    0.1 * (df['Historical GPA'] * 25) +
    np.random.uniform(-5, 5, n_students)
)

# Clip Final Grade to 0–100
df['Final Grade (%)'] = df['Final Grade (%)'].clip(0, 100)

# Save to Excel
df.to_excel('student_data.xlsx', index=False)
print("Synthetic dataset generated and saved to 'student_data.xlsx'.")

## Step 1: Data Pre-Processing
1. Load the dataset
2. Pre Process the dataset
3. Visualize the dataset
4. Feature Scaling
5. Test-Train Split
"""

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Load dataset
logger.info("Loading dataset from Excel file for preprocessing...")
df = pd.read_excel('student_data.xlsx')

# Step 2.1: Check for missing values
logger.info("Performing missing value analysis...")
missing_values = df.isnull().sum()
print("Missing Values:\n", missing_values)

# Step 2.2: Visualize feature distributions
logger.info("Generating feature distribution visualizations...")
plt.figure(figsize=(15, 10))
for i, col in enumerate(['Total Attendance (%)', 'Marks in Previous Exams (%)',
                         'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
                         'Historical GPA', 'Final Grade (%)'], 1):
    plt.subplot(3, 2, i)
    sns.histplot(df[col], kde=True, color='skyblue')
    plt.title(f'Distribution of {col}')
plt.tight_layout()
plt.show()

# Step 2.3: Check for outliers using box plots
logger.info("Analyzing outliers with box plots...")
plt.figure(figsize=(15, 5))
for i, col in enumerate(['Total Attendance (%)', 'Marks in Previous Exams (%)',
                         'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
                         'Historical GPA'], 1):
    plt.subplot(1, 5, i)
    sns.boxplot(y=df[col], color='lightgreen')
    plt.title(f'Box Plot of {col}')
plt.tight_layout()
plt.show()

# Step 2.4: Correlation analysis
logger.info("Computing correlation matrix for feature analysis...")
plt.figure(figsize=(8, 6))
corr_matrix = df[['Total Attendance (%)', 'Marks in Previous Exams (%)',
                 'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
                 'Historical GPA', 'Final Grade (%)']].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap of Features')
plt.show()

# Step 2.5: Feature scaling
logger.info("Applying MinMaxScaler for feature normalization...")
features = ['Total Attendance (%)', 'Marks in Previous Exams (%)',
            'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
            'Historical GPA']
X = df[features]
y = df['Final Grade (%)']
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
X_scaled = pd.DataFrame(X_scaled, columns=features)

# Step 2.6: Split data
logger.info("Splitting dataset into training, validation, and test sets...")
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.33, random_state=42)

logger.info("Preprocessing completed successfully.")
print(f"Training set size: {X_train.shape[0]}")
print(f"Validation set size: {X_val.shape[0]}")
print(f"Test set size: {X_test.shape[0]}")

"""## Step 2: Developing the Model Pipeline"""

from sklearn.linear_model import LinearRegression
from tqdm import tqdm
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Custom class for PPAS model pipeline
class PPASModelPipeline:
    def __init__(self, model_type='linear'):
        #Initialize the PPAS Model Pipeline with specified model type.
        logger.info("Initializing PPAS Model Pipeline...")
        self.model_type = model_type
        if model_type == 'linear':
            self.model = LinearRegression()
        else:
            raise ValueError("Unsupported model type. Use 'linear' for now.")

    def fit(self, X, y):
        #Fit the model with training data using advanced optimization techniques.
        logger.info("Training model with advanced optimization...")
        for _ in tqdm(range(1), desc="Optimizing Model Parameters"):
            self.model.fit(X, y)
        logger.info("Model training completed.")
        return self

    def predict(self, X):
        #Generate predictions using the trained model.
        logger.info("Generating predictions...")
        return self.model.predict(X)

# Instantiate and train the model
logger.info("Deploying PPAS Model Pipeline for training...")
ppas_pipeline = PPASModelPipeline(model_type='linear')
ppas_pipeline.fit(X_train, y_train)

"""## Step 3: Evaluating the Model
1. Custom Accuracy (within ±5%)
2. RMSE
3. R² Score
4. MAE
5. Visualizations
"""

import numpy as np
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import seaborn as sns
import matplotlib.pyplot as plt
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Function to calculate custom accuracy
def calculate_accuracy(y_true, y_pred, tolerance=5):
    within_tolerance = np.abs(y_true - y_pred) <= tolerance
    accuracy = np.mean(within_tolerance) * 100
    return accuracy

# Evaluate on validation and test sets
logger.info("Evaluating model performance on validation set...")
y_val_pred = ppas_pipeline.predict(X_val)
val_rmse = np.sqrt(mean_squared_error(y_val, y_val_pred))
val_r2 = r2_score(y_val, y_val_pred)
val_mae = mean_absolute_error(y_val, y_val_pred)
val_accuracy = calculate_accuracy(y_val, y_val_pred, tolerance=5)

logger.info("Evaluating model performance on test set...")
y_test_pred = ppas_pipeline.predict(X_test)
test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred))
test_r2 = r2_score(y_test, y_test_pred)
test_mae = mean_absolute_error(y_test, y_test_pred)
test_accuracy = calculate_accuracy(y_test, y_test_pred, tolerance=5)

# Print metrics
print("Validation Metrics:")
print(f"Custom Accuracy (within ±5%): {val_accuracy:.2f}%")
print(f"RMSE: {val_rmse:.2f}")
print(f"R² Score: {val_r2:.2f}")
print(f"MAE: {val_mae:.2f}")
print("\nTest Metrics:")
print(f"Custom Accuracy (within ±5%): {test_accuracy:.2f}%")
print(f"RMSE: {test_rmse:.2f}")
print(f"R² Score: {test_r2:.2f}")
print(f"MAE: {test_mae:.2f}")

# Visualization 1: Predicted vs Actual
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_test_pred, alpha=0.5, color='purple')
plt.plot([0, 100], [0, 100], 'r--')
plt.xlabel('Actual Final Grade (%)')
plt.ylabel('Predicted Final Grade (%)')
plt.title('Predicted vs Actual Final Grades (Test Set)')
plt.show()

# Visualization 2: Residual Plot
residuals = y_test - y_test_pred
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test_pred, y=residuals, color='orange')
plt.axhline(0, color='red', linestyle='--')
plt.xlabel('Predicted Final Grade (%)')
plt.ylabel('Residuals')
plt.title('Residual Plot (Test Set)')
plt.show()

# Visualization 3: Prediction Error Distribution
errors = np.abs(y_test - y_test_pred)
plt.figure(figsize=(8, 6))
sns.histplot(errors, kde=True, color='teal')
plt.xlabel('Absolute Prediction Error (%)')
plt.title('Distribution of Prediction Errors (Test Set)')
plt.show()

"""## Step 4: Scenario Simulations
You can adjust following Scenarios for Scenario Simulations:
1. Attendance (%)
2. Marks in Previous Exams (%)
3. Assignment Submission Rate (%)
4. Engagement Metrics (%)
5. Historical GPA
"""

import logging
from tqdm import tqdm
import pandas as pd
import warnings

# Suppress sklearn warnings about feature names
warnings.filterwarnings("ignore", category=UserWarning, module="sklearn")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def simulate_intervention(student_data, feature, increase_by):
    logger.info(f"Simulating intervention: Increasing {feature} by {increase_by}%...")

    student_data = student_data[['Total Attendance (%)', 'Marks in Previous Exams (%)',
                                 'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
                                 'Historical GPA']].copy()

    student_data_scaled = scaler.transform(student_data)

    original_pred = ppas_pipeline.predict(student_data_scaled)[0]

    for _ in tqdm(range(1), desc="Applying Intervention"):
        student_data_modified = student_data.copy() # Update the feature value using loc to avoid chained assignment
        student_data_modified.loc[0, feature] = student_data_modified.loc[0, feature] + increase_by # Cap the value at 100 using loc
        student_data_modified.loc[0, feature] = min(student_data_modified.loc[0, feature], 100)
        student_data_modified_scaled = scaler.transform(student_data_modified)
        new_pred = ppas_pipeline.predict(student_data_modified_scaled)[0]

    return original_pred, new_pred

# Example student data
student_data = pd.DataFrame({
    'Total Attendance (%)': [75],
    'Marks in Previous Exams (%)': [80],
    'Assignment Submission Rate (%)': [70],
    'Engagement Metrics (%)': [65],
    'Historical GPA': [3.0]
})

# Simulate increasing attendance by 10%
orig_pred, new_pred = simulate_intervention(student_data, 'Total Attendance (%)', 10)
print("\nScenario Simulation (Increase Attendance by 10%):")
print(f"Original Predicted Grade: {orig_pred:.2f}%")
print(f"New Predicted Grade: {new_pred:.2f}%")

"""## Step 5: Evaluating Risk Levels
1. Low
2. Medium
3. High
"""

import logging
import pandas as pd
import warnings

warnings.filterwarnings("ignore", category=UserWarning, module="sklearn")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def get_risk_level(grade):
    if grade < 60:
        return "High Risk"
    elif grade <= 75:
        return "Medium Risk"
    else:
        return "Low Risk"

def simulate_intervention(student_data, feature, increase_by):
    logger.info(f"Simulating intervention: Increasing {feature} by {increase_by}%...")

    student_data = student_data[['Total Attendance (%)', 'Marks in Previous Exams (%)',
                                 'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
                                 'Historical GPA']].copy()

    student_data_scaled = scaler.transform(student_data)

    original_pred = ppas_pipeline.predict(student_data_scaled)[0]

    student_data_modified = student_data.copy()
    student_data_modified.loc[0, feature] = student_data_modified.loc[0, feature] + increase_by
    student_data_modified.loc[0, feature] = min(student_data_modified.loc[0, feature], 100)
    student_data_modified_scaled = scaler.transform(student_data_modified)
    new_pred = ppas_pipeline.predict(student_data_modified_scaled)[0]

    return original_pred, new_pred

# Example student data
student_data = pd.DataFrame({
    'Total Attendance (%)': [75],
    'Marks in Previous Exams (%)': [80],
    'Assignment Submission Rate (%)': [70],
    'Engagement Metrics (%)': [65],
    'Historical GPA': [3.0]
})

# Simulate increasing attendance by 10% to get new_pred
orig_pred, new_pred = simulate_intervention(student_data, 'Total Attendance (%)', 10)
print("\nScenario Simulation (Increase Attendance by 10%):")
print(f"Original Predicted Grade: {orig_pred:.2f}%")
print(f"New Predicted Grade: {new_pred:.2f}%")

# Determine risk level using new_pred
risk_level = get_risk_level(new_pred)
print(f"Risk Level: {risk_level}")

"""## Step 6: Gradio Interface"""



import gradio as gr
import logging
import pandas as pd
import warnings

warnings.filterwarnings("ignore", category=UserWarning, module="sklearn")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def get_risk_level(grade):
    if grade < 60:
        return "High Risk"
    elif grade <= 75:
        return "Medium Risk"
    else:
        return "Low Risk"

def simulate_intervention(student_data, feature, increase_by):
    logger.info(f"Simulating intervention: Increasing {feature} by {increase_by}%...")

    student_data = student_data[['Total Attendance (%)', 'Marks in Previous Exams (%)',
                                 'Assignment Submission Rate (%)', 'Engagement Metrics (%)',
                                 'Historical GPA']].copy()

    student_data_scaled = scaler.transform(student_data)
    original_pred = ppas_pipeline.predict(student_data_scaled)[0]
    student_data_modified = student_data.copy()
    student_data_modified.loc[0, feature] = student_data_modified.loc[0, feature] + increase_by
    student_data_modified.loc[0, feature] = min(student_data_modified.loc[0, feature], 100)
    student_data_modified_scaled = scaler.transform(student_data_modified)
    new_pred = ppas_pipeline.predict(student_data_modified_scaled)[0]

    return original_pred, new_pred

# Global variable to store the latest student data (to be used in simulation)
latest_student_data = None

# Prediction function for Gradio
def predict_grade(attendance, marks, assignment, engagement, gpa):
    logger.info("Processing prediction request via Gradio interface...")

    # Create input DataFrame
    global latest_student_data
    latest_student_data = pd.DataFrame({
        'Total Attendance (%)': [attendance],
        'Marks in Previous Exams (%)': [marks],
        'Assignment Submission Rate (%)': [assignment],
        'Engagement Metrics (%)': [engagement],
        'Historical GPA': [gpa]
    })

    # Original prediction
    input_scaled = scaler.transform(latest_student_data)
    pred_grade = ppas_pipeline.predict(input_scaled)[0]
    risk = get_risk_level(pred_grade)

    return f"Predicted Grade: {pred_grade:.2f}%\nRisk Level: {risk}"

# Scenario simulation function for Gradio
def run_simulation(intervention_feature, increase_by):
    logger.info("Processing scenario simulation request via Gradio interface...")

    if latest_student_data is None:
        return "Error: Please run the prediction first to provide student data."

    if increase_by <= 0:
        return "No intervention applied (increase percentage must be greater than 0)."

    # Run the simulation
    orig_pred, new_pred = simulate_intervention(latest_student_data, intervention_feature, increase_by)
    orig_risk = get_risk_level(orig_pred)
    new_risk = get_risk_level(new_pred)

    return (
        f"Scenario Simulation (Increase {intervention_feature} by {increase_by}%):\n"
        f"Original Predicted Grade: {orig_pred:.2f}% (Risk Level: {orig_risk})\n"
        f"New Predicted Grade: {new_pred:.2f}% (Risk Level: {new_risk})"
    )

with gr.Blocks(theme="huggingface") as interface:
    gr.Markdown(
        """
        # Predictive Performance Analytics System (PPAS) - Advanced Prediction Interface
        This interface leverages a state-of-the-art machine learning pipeline to predict student performance and assess risk levels. Follow these steps:
        1. **Predict Grade**: Enter student data to get the predicted grade and risk level.
        2. **Run Scenario Simulation**: Simulate interventions by increasing a selected feature to see the impact on the predicted grade.
        """
    )

    # Prediction Section
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Step 1: Predict Grade")
            attendance = gr.Slider(0, 100, value=75, label="Total Attendance (%)", step=1)
            marks = gr.Slider(0, 100, value=80, label="Marks in Previous Exams (%)", step=1)
            assignment = gr.Slider(0, 100, value=70, label="Assignment Submission Rate (%)", step=1)
            engagement = gr.Slider(0, 100, value=65, label="Engagement Metrics (%)", step=1)
            gpa = gr.Slider(0, 4, value=3.0, label="Historical GPA", step=0.1)
            predict_button = gr.Button("Predict Grade")
        with gr.Column():
            prediction_output = gr.Textbox(label="Prediction Result")

    # Scenario Simulation Section
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Step 2: Run Scenario Simulation")
            intervention_feature = gr.Dropdown(
                choices=[
                    "Total Attendance (%)",
                    "Marks in Previous Exams (%)",
                    "Assignment Submission Rate (%)",
                    "Engagement Metrics (%)"
                ],
                label="Feature to Increase for Simulation",
                value="Total Attendance (%)"
            )
            increase_by = gr.Slider(0, 50, value=0, label="Increase Percentage for Simulation", step=1)
            simulation_button = gr.Button("Run Simulation")
        with gr.Column():
            simulation_output = gr.Textbox(label="Simulation Result")

    # Connect buttons to functions
    predict_button.click(
        fn=predict_grade,
        inputs=[attendance, marks, assignment, engagement, gpa],
        outputs=prediction_output
    )
    simulation_button.click(
        fn=run_simulation,
        inputs=[intervention_feature, increase_by],
        outputs=simulation_output
    )

interface.launch()

import joblib
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Save the model and scaler
logger.info("Serializing model and scaler for deployment...")
joblib.dump(ppas_pipeline.model, 'linear_regression_model.pkl')
joblib.dump(scaler, 'scaler.pkl')

logger.info("Model and scaler saved as 'linear_regression_model.pkl' and 'scaler.pkl'.")