Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,333 Bytes
456aee9 06e3185 b6a8219 456aee9 5b6d0c5 456aee9 06e3185 456aee9 9297009 456aee9 9297009 456aee9 06e3185 456aee9 06e3185 456aee9 06e3185 456aee9 06e3185 456aee9 2b012d7 06e3185 456aee9 06e3185 9297009 456aee9 06e3185 456aee9 06e3185 456aee9 06e3185 456aee9 9297009 456aee9 9297009 456aee9 06e3185 456aee9 9297009 456aee9 06e3185 456aee9 06e3185 456aee9 9297009 456aee9 9297009 456aee9 06e3185 456aee9 9297009 456aee9 9297009 456aee9 06e3185 456aee9 9297009 456aee9 06e3185 456aee9 06e3185 9297009 456aee9 9297009 06e3185 456aee9 06e3185 456aee9 9297009 456aee9 06e3185 456aee9 06e3185 456aee9 7e16b08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# %%
import copy
from datetime import datetime
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from my_ipadapter_model import load_ipadapter, image_grid, generate
from my_intrinsic_dim import get_intrinsic_dim
from dino_clip_featextract import extract_dino_image_embeds, extract_clip_image_embeds, img_transform, img_transform_inv
from gradio_utils import add_download_button
from my_dino_correspondence import get_correspondence_plot, ncut_tsne_multiple_images, kway_cluster_per_image, get_single_multi_discrete_rgbs, match_centers_three_images, match_centers_two_images, get_center_features
from compression_model_mkii import CompressionModel, train_compression_model, free_memory, get_fg_mask
USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "false")
if USE_HUGGINGFACE_ZEROGPU: # huggingface ZeroGPU, dynamic GPU allocation
try:
import spaces
except:
USE_HUGGINGFACE_ZEROGPU = False
import torch
from PIL import Image
import numpy as np
import skdim
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'monospace'
from omegaconf import OmegaConf
def train_mood_space(pil_images, lr=0.001, steps=5000, width=512, layers=4, dim=None, config_path="./config.yaml"):
images = load_gradio_images_helper(pil_images)
images = torch.stack([img_transform(image) for image in images])
dino_image_embeds = extract_dino_image_embeds(images)
clip_image_embeds = extract_clip_image_embeds(images)
if dim is None:
dim = get_intrinsic_dim(dino_image_embeds.flatten(end_dim=-2))
dim = int(dim)
print(f"intrinsic dim is {dim}")
else:
print(f"using user-specified dim: {dim}")
cfg = OmegaConf.load(config_path)
cfg.mood_dim = dim
cfg.lr = lr
cfg.steps = steps
cfg.latent_dim = width
cfg.n_layer = layers
model = CompressionModel(cfg, gradio_progress=True) #TODO: check if gradio_progress works without gradio
trainer = train_compression_model(model, cfg, dino_image_embeds, clip_image_embeds)
return model, trainer
if USE_HUGGINGFACE_ZEROGPU:
train_mood_space = spaces.GPU(duration=60)(train_mood_space)
def train_mood_space_visualize(image_embeds, dim=2, config_path="/workspace/n25c9900_2d.yaml"):
cfg = OmegaConf.load(config_path)
cfg.mood_dim = dim
cfg.in_dim = image_embeds.shape[-1]
cfg.out_dim = image_embeds.shape[-1]
model = CompressionModel(cfg, gradio_progress=True) #TODO: check if gradio_progress works without gradio
trainer = train_compression_model(model, cfg, image_embeds, image_embeds)
return model, trainer
def load_gradio_images_helper(pil_images):
if isinstance(pil_images[0], tuple):
pil_images = [image[0] for image in pil_images]
if isinstance(pil_images[0], str):
pil_images = [Image.open(image) for image in pil_images]
# convert to RGB
pil_images = [image.convert("RGB") for image in pil_images]
return pil_images
def find_direction_three_images(image_embeds, eigvecs, A2_to_A1, A1_to_B1):
# image_embeds: b, l, c; b = 3, A2, A1, B1
# eigvecs: b, l
n_cluster = eigvecs[0].shape[-1]
A1_center_features = get_center_features(image_embeds[1], eigvecs[1].argmax(-1).cpu(), n_cluster=n_cluster)
B1_center_features = get_center_features(image_embeds[2], eigvecs[2].argmax(-1).cpu(), n_cluster=n_cluster)
direction_A_to_B = []
for i_A, i_B in enumerate(A1_to_B1):
direction = B1_center_features[i_B] - A1_center_features[i_A]
# direction = B1_center_features[i_B]
# direction = direction / direction.norm(dim=-1, keepdim=True)
direction_A_to_B.append(direction)
direction_A_to_B = torch.stack(direction_A_to_B)
cluster_labels = eigvecs[0].argmax(-1).cpu()
n_cluster = eigvecs[0].shape[-1]
direction_for_A2 = torch.zeros_like(image_embeds[0])
for i_cluster in range(n_cluster):
mask = cluster_labels == i_cluster
if mask.sum() > 0:
direction_for_A2[mask] = direction_A_to_B[A2_to_A1[i_cluster]]
return direction_for_A2
def find_direction_two_images(image_embeds, eigvecs, A_to_B, unit_norm_direction=False):
# image_embeds: A, B
# eigvecs: A, B
n_cluster = eigvecs[0].shape[-1]
A_center_features = get_center_features(image_embeds[0], eigvecs[0].argmax(-1).cpu(), n_cluster=n_cluster)
B_center_features = get_center_features(image_embeds[1], eigvecs[1].argmax(-1).cpu(), n_cluster=n_cluster)
direction_A_to_B = []
for i_A, i_B in enumerate(A_to_B):
direction = B_center_features[i_B] - A_center_features[i_A]
if unit_norm_direction:
direction = direction / direction.norm(dim=-1, keepdim=True)
direction_A_to_B.append(direction)
direction_A_to_B = torch.stack(direction_A_to_B)
cluster_labels = eigvecs[0].argmax(-1).cpu()
n_cluster = eigvecs[0].shape[-1]
direction_for_A = torch.zeros_like(image_embeds[0])
for i_cluster in range(n_cluster):
mask = cluster_labels == i_cluster
if mask.sum() > 0:
direction_for_A[mask] = direction_A_to_B[i_cluster]
return direction_for_A
def analogy_three_images(image_list, model, ws, n_cluster=30, n_sample=1, match_method='hungarian'):
# image_list: A2, A1, B1
# ws: list of float
# n_cluster: int
# n_sample: int
# match_method: str
free_memory()
images = torch.stack([img_transform(image) for image in image_list])
dino_image_embeds = extract_dino_image_embeds(images)
compressed_image_embeds = model.compress(dino_image_embeds)
input_embeds = dino_image_embeds
_compressed_image_embeds = compressed_image_embeds
original_images = images
b, l, c = input_embeds.shape
joint_eigvecs, joint_rgbs = ncut_tsne_multiple_images(input_embeds, n_eig=30, gamma=0.5)
single_eigvecs = kway_cluster_per_image(input_embeds, n_cluster=n_cluster, gamma=0.5)
# single_eigvecs = kway_cluster_multiple_images(input_embeds, n_cluster=n_cluster, gamma=0.5)
discrete_rgbs = get_single_multi_discrete_rgbs(joint_rgbs, single_eigvecs)
A2_to_A1, A1_to_B1 = match_centers_three_images(dino_image_embeds, single_eigvecs, match_method=match_method)
direction = find_direction_three_images(_compressed_image_embeds, single_eigvecs, A2_to_A1, A1_to_B1)
cluster_orders = [
np.arange(n_cluster),
A2_to_A1,
A1_to_B1[A2_to_A1],
]
correspondence_image = get_correspondence_plot(original_images, single_eigvecs, cluster_orders, discrete_rgbs, hw=16, n_cols=10)
ip_model = load_ipadapter()
n_steps = len(ws)
interpolated_images = []
fig, axs = plt.subplots(n_sample, n_steps, figsize=(n_steps * 2, n_sample * 3))
axs = axs.flatten()
progress = gr.Progress()
for i_w, w in enumerate(ws):
progress(i_w/n_steps, desc=f"Interpolating w={w:.2f}")
A2_interpolated = _compressed_image_embeds[0] + direction * w
A2_interpolated = model.uncompress(A2_interpolated)
gen_images = generate(ip_model, A2_interpolated, num_samples=n_sample)
interpolated_images.extend(gen_images)
for i_img in range(n_sample):
ax = axs[i_img * n_steps + i_w]
ax.imshow(gen_images[i_img])
ax.axis('off')
if i_img == 0:
ax.set_title(f"w={w:.2f}")
fig.tight_layout()
del ip_model
free_memory()
return correspondence_image, fig, interpolated_images
if USE_HUGGINGFACE_ZEROGPU:
analogy_three_images = spaces.GPU(duration=60)(analogy_three_images)
def interpolate_two_images(image1, image2, model, ws, n_cluster=20, match_method='hungarian', unit_norm_direction=False, dino_matching=True, seed=None):
free_memory()
images = torch.stack([img_transform(image) for image in [image1, image2]])
dino_image_embeds = extract_dino_image_embeds(images)
compressed_image_embeds = model.compress(dino_image_embeds)
input_embeds = dino_image_embeds
_compressed_image_embeds = compressed_image_embeds
original_images = images
b, l, c = input_embeds.shape
joint_eigvecs, joint_rgbs = ncut_tsne_multiple_images(input_embeds, n_eig=30, gamma=0.5)
single_eigvecs = kway_cluster_per_image(input_embeds, n_cluster=n_cluster, gamma=0.5)
# single_eigvecs = kway_cluster_multiple_images(input_embeds, n_cluster=n_cluster, gamma=0.5)
# discrete_rgbs = get_single_multi_discrete_rgbs(joint_rgbs, single_eigvecs)
A_to_B = match_centers_two_images(dino_image_embeds[0], dino_image_embeds[1], single_eigvecs[0], single_eigvecs[1], match_method=match_method)
if dino_matching:
direction = find_direction_two_images(_compressed_image_embeds, single_eigvecs, A_to_B, unit_norm_direction=unit_norm_direction)
else:
direction = _compressed_image_embeds[1] - _compressed_image_embeds[0]
ip_model = load_ipadapter()
n_steps = len(ws)
interpolated_images = []
for i_w, w in enumerate(ws):
A_interpolated = _compressed_image_embeds[0] + direction * w
A_interpolated = model.uncompress(A_interpolated)
gen_images = generate(ip_model, A_interpolated, num_samples=1, seed=seed)
interpolated_images.extend(gen_images)
del ip_model
free_memory()
return interpolated_images
if USE_HUGGINGFACE_ZEROGPU:
interpolate_two_images = spaces.GPU(duration=60)(interpolate_two_images)
def plot_loss(model):
# Plot loss curves from trainer
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.plot(model.loss_history['recon'])
ax1.set_xlabel('Steps')
ax1.set_ylabel('Loss')
ax1.set_title('Reconstruction Loss')
ax1.grid(True)
eigvec_loss = - np.array(model.loss_history['eigvec'])
ax2.plot(eigvec_loss)
ax2.set_xlabel('Steps')
ax2.set_ylabel('Loss')
ax2.set_title('Eigenvector Loss')
ax2.grid(True)
plt.tight_layout()
return fig
DEFAULT_IMAGES_PATH = ["./images/black_bear1.jpg", "./images/black_bear2.jpg", "./images/pink_bear1.jpg"]
DEFAULT_IMAGES = [Image.open(image_path) for image_path in DEFAULT_IMAGES_PATH]
# DEFAULT_IMAGES = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in DEFAULT_IMAGES]
if USE_HUGGINGFACE_ZEROGPU:
from download_models import download_ipadapter
download_ipadapter()
# %%
if __name__ == "__main__":
import gradio as gr
demo = gr.Blocks(
theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'),
)
with demo:
model = gr.State([])
with gr.Tab("1. Mood Space"):
gr.Markdown("""
Instructions:
Please use the tabs to navigate through the app.
- Tab 1: Train a Mood Space compression model
- Tab 2: Interpolate between two images
- Tab 3: Path Lifting, given A1 -> B1, what's the A2 -> B2?
""")
# gr.Markdown("Train a Mood Space compression model")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(label="Mood Board Images", show_label=False)
upload_button = gr.UploadButton(elem_id="upload_button", label="Upload", variant='secondary', file_types=["image"], file_count="multiple")
def convert_to_pil_and_append(images, new_images):
if images is None:
images = []
if new_images is None:
return images
if isinstance(new_images, Image.Image):
images.append(new_images)
if isinstance(new_images, list):
images += [Image.open(new_image) for new_image in new_images]
if isinstance(new_images, str):
images.append(Image.open(new_images))
gr.Info(f"Total images: {len(images)}")
return images
upload_button.upload(convert_to_pil_and_append, inputs=[input_images, upload_button], outputs=[input_images])
# def load_example():
# default_images = DEFAULT_IMAGES
# return default_images
def load_images(images):
return images
# load_example_button = gr.Button("Load Example Images")
# load_example_button.click(load_example, inputs=[], outputs=input_images)
# add_download_button(input_images, filename_prefix="mood_board_images")
with gr.Column():
with gr.Accordion("Training Parameters", open=False):
lr = gr.Slider(minimum=0.0001, maximum=0.01, step=0.0001, value=0.001, label="Learning Rate")
steps = gr.Slider(minimum=1000, maximum=100000, step=100, value=1500, label="Training Steps")
width = gr.Slider(minimum=16, maximum=4096, step=16, value=512, label="MLP Width")
layers = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="MLP Layers")
train_button = gr.Button("Train", variant="primary")
def _train_wrapper(images, lr, steps, width, layers):
model, trainer = train_mood_space(images, lr, steps, width, layers)
loss_plot = plot_loss(model)
gr.Info(f"Training complete.")
return model, loss_plot
loss_plot = gr.Plot(label="Training Loss")
train_button.click(_train_wrapper, inputs=[input_images, lr, steps, width, layers], outputs=[model, loss_plot])
example_groups = {
"Dog -> Fish": ["./images/dog1.jpg", "./images/fish.jpg"],
"Dog -> Paper": ["./images/dog1.jpg", "./images/paper2.jpg"],
"Rotation": ["./images/black_bear1.jpg", "./images/black_bear2.jpg"],
"Rotation (Analogy)": ["./images/black_bear1.jpg", "./images/black_bear2.jpg", "./images/pink_bear1.jpg"],
"Duck -> Pixel": ["./images/duck1.jpg", "./images/duck_pixel.jpg"],
"Duck -> Paper": ["./images/duck1.jpg", "./images/toilet_paper.jpg"],
"Duck -> Paper (Analogy)": ["./images/duck1.jpg", "./images/toilet_paper.jpg", "./images/duck_pixel.jpg"],
}
def add_image_group_fn(group_gallery):
images = [tup[0] for tup in group_gallery]
# resize images to 512x512
# images = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in images]
return images
gr.Markdown('## Examples')
for group_name, group_images in example_groups.items():
with gr.Row():
with gr.Column(scale=3):
add_button = gr.Button(value=f'add example [{group_name}]', elem_classes=['small-button'])
with gr.Column(scale=7):
group_gallery = gr.Gallery(
value=group_images,
columns=5,
rows=1,
height=200,
object_fit='scale-down',
label=group_name,
elem_classes=['large-gallery'],
)
add_button.click(
add_image_group_fn,
inputs=[group_gallery],
outputs=[input_images],
)
with gr.Tab("2. Interpolate"):
# gr.Markdown("Interpolate between two images")
with gr.Row():
input_A1 = gr.Image(label="A1", type="pil")
input_B1 = gr.Image(label="B1", type="pil")
with gr.Column():
# def _load_two_images():
# default_images = DEFAULT_IMAGES[:2]
# return default_images
# load_example_button3 = gr.Button("Load Example Images")
# load_example_button3.click(_load_two_images, inputs=[], outputs=[input_A1, input_B1])
fill_in_images_button = gr.Button("Reload Images")
with gr.Accordion("Interpolation Parameters", open=False):
w_left = gr.Slider(minimum=-10, maximum=10, step=0.01, value=0, label="Start w")
w_right = gr.Slider(minimum=-10, maximum=10, step=0.01, value=1, label="End w")
n_steps = gr.Slider(minimum=1, maximum=100, step=2, value=10, label="N interpolation")
n_sample = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="N samples per interpolation")
n_cluster = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="N segments", info="for correspondence matching")
match_method = gr.Radio(choices=['hungarian', 'argmin'], value='hungarian', label="Matching Method")
interpolate_button = gr.Button("Run Interpolation", variant="primary")
interpolated_images_plot = gr.Image(label="interpolated images")
interpolated_images = gr.Gallery(label="Interpolated Images", show_label=False, visible=False)
add_download_button(interpolated_images, filename_prefix="interpolated_images")
def _infer_two_images(A1, B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method):
if model is None or model == []:
gr.Error("Please train a model first.")
return None, None, None
pil_images = [A1, B1]
images = load_gradio_images_helper(pil_images)
ws = torch.linspace(w_left, w_right, n_steps)
interpolated_images = interpolate_two_images(*images, model, ws, n_cluster, match_method)
# resize interpolated_images to 512x512
interpolated_images = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in interpolated_images]
plot_images = [images[0].resize((512, 512), resample=Image.Resampling.LANCZOS)] + interpolated_images + [images[1].resize((512, 512), resample=Image.Resampling.LANCZOS)]
plot_images = image_grid(plot_images, 2, len(plot_images)//2)
return interpolated_images, plot_images
interpolate_button.click(_infer_two_images,
inputs=[input_A1, input_B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method],
outputs=[interpolated_images, interpolated_images_plot])
## fill in the images from input_images
def fill_in_images(input_images):
if input_images is None:
return None
return input_images[0][0], input_images[1][0]
fill_in_images_button.click(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1])
input_images.change(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1])
with gr.Tab("3. Path Lifting"):
gr.Markdown("""
given A1 -> B1, infer A2 -> B2
""")
with gr.Row():
input_A1 = gr.Image(label="A1", type="pil")
input_B1 = gr.Image(label="B1", type="pil")
input_A2 = gr.Image(label="A2", type="pil")
picked_B2 = gr.Image(label="B2", type="pil", interactive=False)
with gr.Column():
# def _load_three_images():
# default_images = DEFAULT_IMAGES
# return default_images
# load_example_button2 = gr.Button("Load Example Images")
# load_example_button2.click(_load_three_images, inputs=[], outputs=[input_A2, input_A1, input_B1])
fill_in_images_button2 = gr.Button("Reload Images")
with gr.Accordion("Interpolation Parameters", open=False):
w_left = gr.Slider(minimum=-10, maximum=10, step=0.01, value=0, label="Start w")
w_right = gr.Slider(minimum=-10, maximum=10, step=0.01, value=1., label="End w")
n_steps = gr.Slider(minimum=1, maximum=100, step=2, value=12, label="N interpolation")
n_sample = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="N samples per interpolation")
n_cluster = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="N segments", info="for correspondence matching")
match_method = gr.Radio(choices=['hungarian', 'argmin'], value='hungarian', label="Matching Method")
interpolate_button = gr.Button("Run Path Lifting", variant="primary")
def revert_images(A1, B1, A2, B2):
return B1, A1, B2, A2
revert_button = gr.Button("Revert Images", variant="secondary")
revert_button.click(revert_images, inputs=[input_A1, input_B1, input_A2, picked_B2], outputs=[input_A1, input_B1, input_A2, picked_B2])
output_B2 = gr.Plot(label="B2 (interpolated)")
interpolated_images = gr.Gallery(label="Interpolated Images", show_label=False, visible=False)
correspondence_image = gr.Image(label="Correspondence Image", interactive=False)
add_download_button(interpolated_images, filename_prefix="interpolated_images")
def pick_best_image(interpolated_images, evt: gr.SelectData):
best_image = interpolated_images[evt.index][0]
logging_text = f"Selected Eigenvector at Index #{evt.index}"
label = F'Eigenvector at Index #{evt.index}'
return best_image
interpolated_images.select(pick_best_image, interpolated_images, [picked_B2])
def _infer_three_images(A2, A1, B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method):
if model is None or model == []:
gr.Error("Please train a model first.")
return None, None, None
pil_images = [A2, A1, B1]
images = load_gradio_images_helper(pil_images)
ws = torch.linspace(w_left, w_right, n_steps)
correspondence_image, fig, interpolated_images = analogy_three_images(images, model, ws, n_cluster, n_sample, match_method)
# resize interpolated_images to 512x512
interpolated_images = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in interpolated_images]
return correspondence_image, fig, interpolated_images
interpolate_button.click(_infer_three_images,
inputs=[input_A2, input_A1, input_B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method],
outputs=[correspondence_image, output_B2, interpolated_images])
## fill in the images from input_images
def fill_in_images(input_images):
if input_images is None:
return None
if len(input_images) == 2:
return input_images[0][0], input_images[1][0], input_images[0][0]
elif len(input_images) == 3:
return input_images[0][0], input_images[1][0], input_images[2][0]
fill_in_images_button2.click(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1, input_A2])
input_images.change(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1, input_A2])
# with gr.Tab("3. Make Plot"):
# plot_button = gr.Button("Make Plot", variant="primary")
# gallery_fig = gr.Gallery(label="Gallery", show_label=False, type="filepath")
# add_download_button(gallery_fig, filename_prefix="output_images")
# def open_images(imgA1, imgB1, imgA2, imgB2):
# img_list = [imgA1, imgB1, imgA2, imgB2]
# for _img in [imgA1, imgB1, imgA2, imgB2]:
# img = load_gradio_images_helper([_img])
# img = img[0].resize((512, 512), resample=Image.Resampling.LANCZOS)
# img_list.append(img)
# img_list = img_list[:4]
# img_grid = image_grid(img_list[:4], 1, 4)
# img_list.append(img_grid)
# img_grid = image_grid(img_list[:4], 2, 2)
# img_list.append(img_grid)
# return img_list
# plot_button.click(open_images, inputs=[input_A1, input_B1, input_A2, picked_B2], outputs=[gallery_fig])
demo.launch(share=True)
|