File size: 25,333 Bytes
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
06e3185
b6a8219
 
 
 
 
 
 
456aee9
 
 
 
 
 
 
 
 
 
 
5b6d0c5
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e3185
 
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297009
 
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297009
456aee9
 
 
 
06e3185
 
 
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e3185
 
456aee9
 
 
 
 
 
 
 
 
 
 
06e3185
 
456aee9
 
 
 
 
 
 
 
 
06e3185
 
 
 
 
 
456aee9
 
 
 
 
 
 
 
 
 
2b012d7
06e3185
 
 
 
 
 
 
 
 
456aee9
 
 
06e3185
9297009
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e3185
 
 
 
456aee9
06e3185
 
 
 
456aee9
06e3185
456aee9
9297009
456aee9
 
 
 
 
 
 
9297009
456aee9
 
 
 
 
06e3185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456aee9
9297009
456aee9
 
06e3185
 
456aee9
 
06e3185
 
 
 
 
 
456aee9
9297009
456aee9
9297009
 
456aee9
 
 
06e3185
456aee9
 
 
9297009
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
9297009
456aee9
 
 
 
 
 
 
 
 
 
 
06e3185
456aee9
9297009
 
456aee9
 
 
 
06e3185
 
 
456aee9
 
 
06e3185
 
 
 
 
 
9297009
456aee9
9297009
06e3185
 
456aee9
 
06e3185
456aee9
 
 
 
 
 
 
 
9297009
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e3185
 
 
 
456aee9
06e3185
456aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e16b08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# %%
import copy
from datetime import datetime
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"

from my_ipadapter_model import load_ipadapter, image_grid, generate
from my_intrinsic_dim import get_intrinsic_dim
from dino_clip_featextract import extract_dino_image_embeds, extract_clip_image_embeds, img_transform, img_transform_inv
from gradio_utils import add_download_button
from my_dino_correspondence import get_correspondence_plot, ncut_tsne_multiple_images, kway_cluster_per_image, get_single_multi_discrete_rgbs, match_centers_three_images, match_centers_two_images, get_center_features
from compression_model_mkii import CompressionModel, train_compression_model, free_memory, get_fg_mask


USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "false")

if USE_HUGGINGFACE_ZEROGPU:  # huggingface ZeroGPU, dynamic GPU allocation 
    try:
        import spaces
    except:
        USE_HUGGINGFACE_ZEROGPU = False

import torch
from PIL import Image
import numpy as np
import skdim

import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'monospace'

from omegaconf import OmegaConf


def train_mood_space(pil_images, lr=0.001, steps=5000, width=512, layers=4, dim=None, config_path="./config.yaml"): 
    images = load_gradio_images_helper(pil_images)
    images = torch.stack([img_transform(image) for image in images])
    dino_image_embeds = extract_dino_image_embeds(images)
    clip_image_embeds = extract_clip_image_embeds(images)
    if dim is None:
        dim = get_intrinsic_dim(dino_image_embeds.flatten(end_dim=-2))
        dim = int(dim)
        print(f"intrinsic dim is {dim}")
    else:
        print(f"using user-specified dim: {dim}")

    cfg = OmegaConf.load(config_path)
    cfg.mood_dim = dim
    cfg.lr = lr
    cfg.steps = steps
    cfg.latent_dim = width
    cfg.n_layer = layers

    model = CompressionModel(cfg, gradio_progress=True)  #TODO: check if gradio_progress works without gradio
    trainer = train_compression_model(model, cfg, dino_image_embeds, clip_image_embeds)
    return model, trainer

if USE_HUGGINGFACE_ZEROGPU:
    train_mood_space = spaces.GPU(duration=60)(train_mood_space)

def train_mood_space_visualize(image_embeds, dim=2, config_path="/workspace/n25c9900_2d.yaml"): 

    cfg = OmegaConf.load(config_path)
    cfg.mood_dim = dim
    cfg.in_dim = image_embeds.shape[-1]
    cfg.out_dim = image_embeds.shape[-1]

    model = CompressionModel(cfg, gradio_progress=True)  #TODO: check if gradio_progress works without gradio
    trainer = train_compression_model(model, cfg, image_embeds, image_embeds)
    return model, trainer



def load_gradio_images_helper(pil_images):
    if isinstance(pil_images[0], tuple):
        pil_images = [image[0] for image in pil_images]
    if isinstance(pil_images[0], str):
        pil_images = [Image.open(image) for image in pil_images]
    # convert to RGB
    pil_images = [image.convert("RGB") for image in pil_images]
    return pil_images


def find_direction_three_images(image_embeds, eigvecs, A2_to_A1, A1_to_B1):
    # image_embeds: b, l, c; b = 3, A2, A1, B1
    # eigvecs: b, l
    n_cluster = eigvecs[0].shape[-1]
    A1_center_features = get_center_features(image_embeds[1], eigvecs[1].argmax(-1).cpu(), n_cluster=n_cluster)
    B1_center_features = get_center_features(image_embeds[2], eigvecs[2].argmax(-1).cpu(), n_cluster=n_cluster)
    direction_A_to_B = []
    for i_A, i_B in enumerate(A1_to_B1):
        direction = B1_center_features[i_B] - A1_center_features[i_A]
        # direction = B1_center_features[i_B]
        # direction = direction / direction.norm(dim=-1, keepdim=True)
        direction_A_to_B.append(direction)
    direction_A_to_B = torch.stack(direction_A_to_B)

    cluster_labels = eigvecs[0].argmax(-1).cpu()
    n_cluster = eigvecs[0].shape[-1]
    direction_for_A2 = torch.zeros_like(image_embeds[0])
    for i_cluster in range(n_cluster):
        mask = cluster_labels == i_cluster
        if mask.sum() > 0:
            direction_for_A2[mask] = direction_A_to_B[A2_to_A1[i_cluster]]
    return direction_for_A2

def find_direction_two_images(image_embeds, eigvecs, A_to_B, unit_norm_direction=False):
    # image_embeds: A, B
    # eigvecs: A, B
    n_cluster = eigvecs[0].shape[-1]
    A_center_features = get_center_features(image_embeds[0], eigvecs[0].argmax(-1).cpu(), n_cluster=n_cluster)
    B_center_features = get_center_features(image_embeds[1], eigvecs[1].argmax(-1).cpu(), n_cluster=n_cluster)
    direction_A_to_B = []
    for i_A, i_B in enumerate(A_to_B):
        direction = B_center_features[i_B] - A_center_features[i_A]
        if unit_norm_direction:
            direction = direction / direction.norm(dim=-1, keepdim=True)
        direction_A_to_B.append(direction)
    direction_A_to_B = torch.stack(direction_A_to_B)

    cluster_labels = eigvecs[0].argmax(-1).cpu()
    n_cluster = eigvecs[0].shape[-1]
    direction_for_A = torch.zeros_like(image_embeds[0])
    for i_cluster in range(n_cluster):
        mask = cluster_labels == i_cluster
        if mask.sum() > 0:
            direction_for_A[mask] = direction_A_to_B[i_cluster]
    return direction_for_A

def analogy_three_images(image_list, model, ws, n_cluster=30, n_sample=1, match_method='hungarian'):
    # image_list: A2, A1, B1
    # ws: list of float
    # n_cluster: int
    # n_sample: int
    # match_method: str
    free_memory()
    images = torch.stack([img_transform(image) for image in image_list])
    dino_image_embeds = extract_dino_image_embeds(images)
    compressed_image_embeds = model.compress(dino_image_embeds)
    input_embeds = dino_image_embeds
    _compressed_image_embeds = compressed_image_embeds
    original_images = images

    b, l, c = input_embeds.shape
    joint_eigvecs, joint_rgbs = ncut_tsne_multiple_images(input_embeds, n_eig=30, gamma=0.5)
    single_eigvecs = kway_cluster_per_image(input_embeds, n_cluster=n_cluster, gamma=0.5)
    # single_eigvecs = kway_cluster_multiple_images(input_embeds, n_cluster=n_cluster, gamma=0.5)
    discrete_rgbs = get_single_multi_discrete_rgbs(joint_rgbs, single_eigvecs)

    A2_to_A1, A1_to_B1 = match_centers_three_images(dino_image_embeds, single_eigvecs, match_method=match_method)

    direction = find_direction_three_images(_compressed_image_embeds, single_eigvecs, A2_to_A1, A1_to_B1)

    cluster_orders = [
        np.arange(n_cluster),
        A2_to_A1,
        A1_to_B1[A2_to_A1],
    ]
    correspondence_image = get_correspondence_plot(original_images, single_eigvecs, cluster_orders, discrete_rgbs, hw=16, n_cols=10)

    ip_model = load_ipadapter()
    
    n_steps = len(ws)
    interpolated_images = []
    fig, axs = plt.subplots(n_sample, n_steps, figsize=(n_steps * 2, n_sample * 3))
    axs = axs.flatten()
    progress = gr.Progress()
    for i_w, w in enumerate(ws):
        progress(i_w/n_steps, desc=f"Interpolating w={w:.2f}")
        A2_interpolated = _compressed_image_embeds[0] + direction * w
        A2_interpolated = model.uncompress(A2_interpolated)
        gen_images = generate(ip_model, A2_interpolated, num_samples=n_sample)
        interpolated_images.extend(gen_images)
        for i_img in range(n_sample):
            ax = axs[i_img * n_steps + i_w]
            ax.imshow(gen_images[i_img])
            ax.axis('off')
            if i_img == 0:
                ax.set_title(f"w={w:.2f}")
    fig.tight_layout()
    del ip_model
    free_memory()
    return correspondence_image, fig, interpolated_images

if USE_HUGGINGFACE_ZEROGPU:
    analogy_three_images = spaces.GPU(duration=60)(analogy_three_images)

def interpolate_two_images(image1, image2, model, ws, n_cluster=20, match_method='hungarian', unit_norm_direction=False, dino_matching=True, seed=None):
    free_memory()
    images = torch.stack([img_transform(image) for image in [image1, image2]])
    dino_image_embeds = extract_dino_image_embeds(images)
    compressed_image_embeds = model.compress(dino_image_embeds)
    input_embeds = dino_image_embeds
    _compressed_image_embeds = compressed_image_embeds
    original_images = images

    b, l, c = input_embeds.shape
    joint_eigvecs, joint_rgbs = ncut_tsne_multiple_images(input_embeds, n_eig=30, gamma=0.5)
    single_eigvecs = kway_cluster_per_image(input_embeds, n_cluster=n_cluster, gamma=0.5)
    # single_eigvecs = kway_cluster_multiple_images(input_embeds, n_cluster=n_cluster, gamma=0.5)
    # discrete_rgbs = get_single_multi_discrete_rgbs(joint_rgbs, single_eigvecs)

    A_to_B = match_centers_two_images(dino_image_embeds[0], dino_image_embeds[1], single_eigvecs[0], single_eigvecs[1], match_method=match_method)

    if dino_matching:
        direction = find_direction_two_images(_compressed_image_embeds, single_eigvecs, A_to_B, unit_norm_direction=unit_norm_direction)
    else:
        direction = _compressed_image_embeds[1] - _compressed_image_embeds[0]

    ip_model = load_ipadapter()
    
    n_steps = len(ws)
    interpolated_images = []
    for i_w, w in enumerate(ws):
        A_interpolated = _compressed_image_embeds[0] + direction * w
        A_interpolated = model.uncompress(A_interpolated)
        gen_images = generate(ip_model, A_interpolated, num_samples=1, seed=seed)
        interpolated_images.extend(gen_images)
    
    del ip_model
    free_memory()
    return interpolated_images

if USE_HUGGINGFACE_ZEROGPU:
    interpolate_two_images = spaces.GPU(duration=60)(interpolate_two_images)

def plot_loss(model):
    # Plot loss curves from trainer
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

    ax1.plot(model.loss_history['recon'])
    ax1.set_xlabel('Steps')
    ax1.set_ylabel('Loss')
    ax1.set_title('Reconstruction Loss')
    ax1.grid(True)

    eigvec_loss = - np.array(model.loss_history['eigvec'])
    ax2.plot(eigvec_loss)
    ax2.set_xlabel('Steps') 
    ax2.set_ylabel('Loss')
    ax2.set_title('Eigenvector Loss')
    ax2.grid(True)

    plt.tight_layout()
    
    return fig

DEFAULT_IMAGES_PATH = ["./images/black_bear1.jpg", "./images/black_bear2.jpg", "./images/pink_bear1.jpg"]
DEFAULT_IMAGES = [Image.open(image_path) for image_path in DEFAULT_IMAGES_PATH]
# DEFAULT_IMAGES = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in DEFAULT_IMAGES]
if USE_HUGGINGFACE_ZEROGPU:
    from download_models import download_ipadapter  
    download_ipadapter()
# %%
if __name__ == "__main__":
    import gradio as gr

    demo = gr.Blocks(
        theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'),
    )
    with demo:
        model = gr.State([])

        with gr.Tab("1. Mood Space"):
            gr.Markdown("""
                        Instructions:
                        Please use the tabs to navigate through the app.
                        - Tab 1: Train a Mood Space compression model
                        - Tab 2: Interpolate between two images
                        - Tab 3: Path Lifting, given A1 -> B1, what's the A2 -> B2?
                        """)

            # gr.Markdown("Train a Mood Space compression model")

            with gr.Row():
                with gr.Column():
                    input_images = gr.Gallery(label="Mood Board Images", show_label=False)
                    upload_button = gr.UploadButton(elem_id="upload_button", label="Upload", variant='secondary', file_types=["image"], file_count="multiple")
                    
                    def convert_to_pil_and_append(images, new_images):
                        if images is None:
                            images = []
                        if new_images is None:
                            return images
                        if isinstance(new_images, Image.Image):
                            images.append(new_images)
                        if isinstance(new_images, list):
                            images += [Image.open(new_image) for new_image in new_images]
                        if isinstance(new_images, str):
                            images.append(Image.open(new_images))
                        gr.Info(f"Total images: {len(images)}")
                        return images
                    upload_button.upload(convert_to_pil_and_append, inputs=[input_images, upload_button], outputs=[input_images])
                    
                    # def load_example():
                    #     default_images = DEFAULT_IMAGES
                    #     return default_images
                    def load_images(images):
                        return images
                    # load_example_button = gr.Button("Load Example Images")
                    # load_example_button.click(load_example, inputs=[], outputs=input_images)
                    # add_download_button(input_images, filename_prefix="mood_board_images")

                with gr.Column():
                    with gr.Accordion("Training Parameters", open=False):
                        lr = gr.Slider(minimum=0.0001, maximum=0.01, step=0.0001, value=0.001, label="Learning Rate")
                        steps = gr.Slider(minimum=1000, maximum=100000, step=100, value=1500, label="Training Steps")
                        width = gr.Slider(minimum=16, maximum=4096, step=16, value=512, label="MLP Width")
                        layers = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="MLP Layers")
                    train_button = gr.Button("Train", variant="primary")

                    def _train_wrapper(images, lr, steps, width, layers):
                        model, trainer = train_mood_space(images, lr, steps, width, layers)
                        loss_plot = plot_loss(model)
                        gr.Info(f"Training complete.")
                        return model, loss_plot

                    loss_plot = gr.Plot(label="Training Loss")
                    train_button.click(_train_wrapper, inputs=[input_images, lr, steps, width, layers], outputs=[model, loss_plot])

            example_groups = {
                "Dog -> Fish": ["./images/dog1.jpg", "./images/fish.jpg"],
                "Dog -> Paper": ["./images/dog1.jpg", "./images/paper2.jpg"],
                "Rotation": ["./images/black_bear1.jpg", "./images/black_bear2.jpg"],
                "Rotation (Analogy)": ["./images/black_bear1.jpg", "./images/black_bear2.jpg", "./images/pink_bear1.jpg"],
                "Duck -> Pixel": ["./images/duck1.jpg", "./images/duck_pixel.jpg"],
                "Duck -> Paper": ["./images/duck1.jpg", "./images/toilet_paper.jpg"],
                "Duck -> Paper (Analogy)": ["./images/duck1.jpg", "./images/toilet_paper.jpg", "./images/duck_pixel.jpg"],
            }

            def add_image_group_fn(group_gallery):
                images = [tup[0] for tup in group_gallery]
                # resize images to 512x512
                # images = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in images]
                return images
            
            gr.Markdown('## Examples')
            for group_name, group_images in example_groups.items():
                with gr.Row():
                    with gr.Column(scale=3):
                        add_button = gr.Button(value=f'add example [{group_name}]', elem_classes=['small-button'])
                    with gr.Column(scale=7):
                        group_gallery = gr.Gallery(
                            value=group_images,
                            columns=5,
                            rows=1,
                            height=200,
                            object_fit='scale-down',
                            label=group_name,
                            elem_classes=['large-gallery'],
                        )

                    add_button.click(
                        add_image_group_fn,
                        inputs=[group_gallery],
                        outputs=[input_images],
                    )

        with gr.Tab("2. Interpolate"):
            # gr.Markdown("Interpolate between two images")

            with gr.Row():
                input_A1 = gr.Image(label="A1", type="pil")
                input_B1 = gr.Image(label="B1", type="pil")
            
                with gr.Column():
                    # def _load_two_images():
                    #     default_images = DEFAULT_IMAGES[:2]
                    #     return default_images
                    # load_example_button3 = gr.Button("Load Example Images")
                    # load_example_button3.click(_load_two_images, inputs=[], outputs=[input_A1, input_B1])
                    fill_in_images_button = gr.Button("Reload Images")

                    with gr.Accordion("Interpolation Parameters", open=False):
                        w_left = gr.Slider(minimum=-10, maximum=10, step=0.01, value=0, label="Start w")
                        w_right = gr.Slider(minimum=-10, maximum=10, step=0.01, value=1, label="End w")
                        n_steps = gr.Slider(minimum=1, maximum=100, step=2, value=10, label="N interpolation")
                        n_sample = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="N samples per interpolation")
                        n_cluster = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="N segments", info="for correspondence matching")
                        match_method = gr.Radio(choices=['hungarian', 'argmin'], value='hungarian', label="Matching Method")
                    interpolate_button = gr.Button("Run Interpolation", variant="primary")


            interpolated_images_plot = gr.Image(label="interpolated images")
            interpolated_images = gr.Gallery(label="Interpolated Images", show_label=False, visible=False)
            add_download_button(interpolated_images, filename_prefix="interpolated_images")

            def _infer_two_images(A1, B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method):
                if model is None or model == []:
                    gr.Error("Please train a model first.")
                    return None, None, None
                pil_images = [A1, B1]
                images = load_gradio_images_helper(pil_images)
                ws = torch.linspace(w_left, w_right, n_steps)
                interpolated_images = interpolate_two_images(*images, model, ws, n_cluster, match_method)
                # resize interpolated_images to 512x512
                interpolated_images = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in interpolated_images]
                plot_images = [images[0].resize((512, 512), resample=Image.Resampling.LANCZOS)] + interpolated_images + [images[1].resize((512, 512), resample=Image.Resampling.LANCZOS)]
                plot_images = image_grid(plot_images, 2, len(plot_images)//2)
                return interpolated_images, plot_images
            interpolate_button.click(_infer_two_images, 
                                    inputs=[input_A1, input_B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method], 
                                    outputs=[interpolated_images, interpolated_images_plot])

            ## fill in the images from input_images
            def fill_in_images(input_images):
                if input_images is None:
                    return None
                return input_images[0][0], input_images[1][0]
            fill_in_images_button.click(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1])
            input_images.change(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1])

        with gr.Tab("3. Path Lifting"):
            gr.Markdown("""                        
            given A1 -> B1, infer A2 -> B2
            """)

            with gr.Row():
                input_A1 = gr.Image(label="A1", type="pil")
                input_B1 = gr.Image(label="B1", type="pil")
                input_A2 = gr.Image(label="A2", type="pil")
                picked_B2 = gr.Image(label="B2", type="pil", interactive=False)
            
                with gr.Column():
                    # def _load_three_images():
                    #     default_images = DEFAULT_IMAGES
                    #     return default_images
                    # load_example_button2 = gr.Button("Load Example Images")
                    # load_example_button2.click(_load_three_images, inputs=[], outputs=[input_A2, input_A1, input_B1])
                    fill_in_images_button2 = gr.Button("Reload Images")
                    with gr.Accordion("Interpolation Parameters", open=False):
                        w_left = gr.Slider(minimum=-10, maximum=10, step=0.01, value=0, label="Start w")
                        w_right = gr.Slider(minimum=-10, maximum=10, step=0.01, value=1., label="End w")
                        n_steps = gr.Slider(minimum=1, maximum=100, step=2, value=12, label="N interpolation")
                        n_sample = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="N samples per interpolation")
                        n_cluster = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="N segments", info="for correspondence matching")
                        match_method = gr.Radio(choices=['hungarian', 'argmin'], value='hungarian', label="Matching Method")
                    interpolate_button = gr.Button("Run Path Lifting", variant="primary")

                    def revert_images(A1, B1, A2, B2):
                        return B1, A1, B2, A2
                    revert_button = gr.Button("Revert Images", variant="secondary")
                    revert_button.click(revert_images, inputs=[input_A1, input_B1, input_A2, picked_B2], outputs=[input_A1, input_B1, input_A2, picked_B2])


            output_B2 = gr.Plot(label="B2 (interpolated)")
            interpolated_images = gr.Gallery(label="Interpolated Images", show_label=False, visible=False)
            correspondence_image = gr.Image(label="Correspondence Image", interactive=False)
            add_download_button(interpolated_images, filename_prefix="interpolated_images")

            def pick_best_image(interpolated_images, evt: gr.SelectData):
                best_image = interpolated_images[evt.index][0]
                logging_text = f"Selected Eigenvector at Index #{evt.index}"
                label = F'Eigenvector at Index #{evt.index}'
                return best_image
            interpolated_images.select(pick_best_image, interpolated_images, [picked_B2])

            def _infer_three_images(A2, A1, B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method):
                if model is None or model == []:
                    gr.Error("Please train a model first.")
                    return None, None, None
                pil_images = [A2, A1, B1]
                images = load_gradio_images_helper(pil_images)
                ws = torch.linspace(w_left, w_right, n_steps)
                correspondence_image, fig, interpolated_images = analogy_three_images(images, model, ws, n_cluster, n_sample, match_method)
                # resize interpolated_images to 512x512
                interpolated_images = [image.resize((512, 512), resample=Image.Resampling.LANCZOS) for image in interpolated_images]
                return correspondence_image, fig, interpolated_images
            interpolate_button.click(_infer_three_images, 
                                    inputs=[input_A2, input_A1, input_B1, model, w_left, w_right, n_steps, n_cluster, n_sample, match_method], 
                                    outputs=[correspondence_image, output_B2, interpolated_images])
            
            ## fill in the images from input_images
            def fill_in_images(input_images):
                if input_images is None:
                    return None
                if len(input_images) == 2:
                    return input_images[0][0], input_images[1][0], input_images[0][0]
                elif len(input_images) == 3:
                    return input_images[0][0], input_images[1][0], input_images[2][0]
            fill_in_images_button2.click(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1, input_A2])
            input_images.change(fill_in_images, inputs=[input_images], outputs=[input_A1, input_B1, input_A2])

        # with gr.Tab("3. Make Plot"):

        #     plot_button = gr.Button("Make Plot", variant="primary")

        #     gallery_fig = gr.Gallery(label="Gallery", show_label=False, type="filepath")
        #     add_download_button(gallery_fig, filename_prefix="output_images")

        #     def open_images(imgA1, imgB1, imgA2, imgB2):
        #         img_list = [imgA1, imgB1, imgA2, imgB2]
        #         for _img in [imgA1, imgB1, imgA2, imgB2]:
        #             img = load_gradio_images_helper([_img])
        #             img = img[0].resize((512, 512), resample=Image.Resampling.LANCZOS)
        #             img_list.append(img)
        #         img_list = img_list[:4]
        #         img_grid = image_grid(img_list[:4], 1, 4)
        #         img_list.append(img_grid)
        #         img_grid = image_grid(img_list[:4], 2, 2)
        #         img_list.append(img_grid)
        #         return img_list
            
        #     plot_button.click(open_images, inputs=[input_A1, input_B1, input_A2, picked_B2], outputs=[gallery_fig])


    demo.launch(share=True)