Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,698 Bytes
456aee9 c8b08bf 456aee9 c8b08bf 456aee9 c8b08bf 456aee9 9297009 456aee9 c8b08bf 456aee9 c8b08bf 456aee9 9e69508 456aee9 9e69508 456aee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from collections import defaultdict
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from ncut_pytorch import nystrom_ncut
from ncut_pytorch.ncut_pytorch import find_gamma_by_degree_after_fps
from ncut_pytorch import NCUT, kway_ncut
from ncut_pytorch.ncut_pytorch import find_gamma_by_degree_after_fps
from omegaconf import DictConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from riemann_curvature_loss import compute_riemann_curvature_loss, compute_boundary_loss, compute_repulsion_loss
from riemann_curvature_loss import compute_axis_align_loss
import gradio as gr
from ncut_pytorch.ncut_pytorch import affinity_from_features, ncut
from ncut_pytorch.affinity_gamma import find_gamma_by_degree_after_fps
from ncut_pytorch.math_utils import compute_riemann_curvature_loss, compute_boundary_loss, compute_repulsion_loss, compute_axis_align_loss
def _kway_ncut_loss(eigvec_gt, eigvec_hat, n_eig):
_eigvec_gt = eigvec_gt[:, :n_eig]
_eigvec_hat = eigvec_hat[:, :n_eig]
loss = F.smooth_l1_loss(_eigvec_gt @ _eigvec_gt.T, _eigvec_hat @ _eigvec_hat.T)
return loss
def flag_space_loss(eigvec_gt, eigvec_hat, n_eig, start=4, step_mult=2):
if torch.all(eigvec_gt == 0) or torch.all(eigvec_hat == 0):
return torch.tensor(0, device=eigvec_gt.device)
loss = 0
n_eig = start // step_mult
while True:
n_eig *= step_mult
loss += _kway_ncut_loss(eigvec_gt, eigvec_hat, n_eig)
if n_eig > eigvec_gt.shape[1] or n_eig > eigvec_hat.shape[1]:
break
return loss
def ncut_wrapper(features, n_eig, distance='rbf', gamma=0.5):
A = affinity_from_features(features, distance=distance, gamma=gamma)
eigvec, eigval = ncut(A, n_eig)
return eigvec, eigval
@torch.no_grad()
def get_fg_mask(image_embeds, num_clusters=3):
# image_embeds b, l, c
if image_embeds.dim() == 2:
image_embeds = image_embeds.unsqueeze(0)
b, l, c = image_embeds.shape
hw = int(np.sqrt(l))
inp = image_embeds[:, 1:].reshape(b*hw*hw, c)
gamma = find_gamma_by_degree_after_fps(inp, 0.1, distance='rbf')
eigvec, eigval = NCUT(10, affinity_focal_gamma=gamma, distance='rbf', device='cuda').fit_transform(inp)
kway_onehot = kway_ncut(eigvec[:, :num_clusters])
kway_index = kway_onehot.argmax(dim=-1)
kway_index = kway_index.reshape(b, hw, hw)
centers = kway_index[:, 8, 8]
corners = torch.cat([kway_index[:, 0, 0], kway_index[:, 0, 15], kway_index[:, 15, 0], kway_index[:, 15, 15]], dim=0)
center_mode = centers.mode().values.item()
corner_mode = corners.mode().values.item()
fg_mask = kway_index == center_mode
fg_mask = fg_mask.reshape(b, hw*hw)
# add back the first token
fg_mask = torch.cat([torch.ones((b, 1), device=fg_mask.device), fg_mask], dim=1)
fg_mask = fg_mask.bool()
return fg_mask
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, n_layer=4, latent_dim=4096):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(in_dim, latent_dim),
nn.GELU(),
*[nn.Sequential(nn.Linear(latent_dim, latent_dim), nn.GELU()) for _ in range(n_layer)],
nn.Linear(latent_dim, out_dim)
)
def forward(self, x):
return self.mlp(x)
class CompressionModel(pl.LightningModule):
def __init__(self, cfg, gradio_progress=False, id_mapping=True):
super().__init__()
self.id_mapping = id_mapping
self.compress = MLP(cfg.in_dim, cfg.mood_dim, cfg.n_layer, cfg.latent_dim)
self.uncompress = MLP(cfg.mood_dim, cfg.out_dim, cfg.n_layer, cfg.latent_dim)
if self.id_mapping:
self.uncompress_dummy = MLP(cfg.mood_dim, cfg.in_dim, cfg.n_layer, cfg.latent_dim)
self.cfg = cfg
self.loss_history = defaultdict(list)
self.gradio_progress = gradio_progress
self.progress = gr.Progress()
def training_step(self, batch):
if self.gradio_progress and self.trainer.global_step % 10 == 0 and self.trainer.global_step > 0:
self.progress(self.trainer.global_step/self.cfg.steps, desc=f"Training, loss = {self.loss_history['recon'][-1]:.4f}")
feats = batch[0]
target_feats = batch[1]
fg_masks = batch[2].flatten()
feats_compressed = self.compress(feats)
feats_uncompressed = self.uncompress(feats_compressed)
if self.id_mapping:
feats_uncompressed_dummy = self.uncompress_dummy(feats_compressed)
if self.trainer.global_step == 0:
self.gamma = find_gamma_by_degree_after_fps(feats[fg_masks], 0.1, distance='rbf')
eigvec_gt, eigval_gt = ncut_wrapper(feats[fg_masks], self.cfg.n_eig, gamma=self.gamma)
eigvec_hat, eigval_hat = ncut_wrapper(feats_compressed, self.cfg.n_eig, gamma=self.gamma)
eigvec_hat = eigvec_hat[fg_masks]
total_loss = 0
if self.cfg.eigvec_loss > 0:
eigvec_loss = flag_space_loss(eigvec_gt, eigvec_hat, n_eig=self.cfg.n_eig)
self.log("loss/eigvec", eigvec_loss, prog_bar=True)
total_loss += eigvec_loss * self.cfg.eigvec_loss
self.loss_history['eigvec'].append(eigvec_loss.item())
if (self.cfg.recon_loss_fg > 0) and torch.any(fg_masks):
recon_loss_fg = F.smooth_l1_loss(target_feats[fg_masks], feats_uncompressed[fg_masks])
self.log("loss/recon_fg", recon_loss_fg, prog_bar=True)
total_loss += recon_loss_fg * self.cfg.recon_loss_fg
self.loss_history['recon'].append(recon_loss_fg.item())
if self.id_mapping and self.cfg.recon_loss_fg_dummy > 0 and torch.any(fg_masks):
recon_loss_fg_dummy = F.smooth_l1_loss(feats[fg_masks], feats_uncompressed_dummy[fg_masks])
self.log("loss/recon_fg_dummy", recon_loss_fg_dummy, prog_bar=True)
total_loss += recon_loss_fg_dummy * self.cfg.recon_loss_fg_dummy
if (self.cfg.recon_loss_bg > 0) and not torch.all(fg_masks):
recon_loss_bg = F.smooth_l1_loss(target_feats[~fg_masks], feats_uncompressed[~fg_masks])
self.log("loss/recon_bg", recon_loss_bg, prog_bar=True)
total_loss += recon_loss_bg * self.cfg.recon_loss_bg
if self.id_mapping and self.cfg.recon_loss_bg_dummy > 0 and not torch.all(fg_masks):
recon_loss_bg_dummy = F.smooth_l1_loss(feats[~fg_masks], feats_uncompressed_dummy[~fg_masks])
self.log("loss/recon_bg_dummy", recon_loss_bg_dummy, prog_bar=True)
total_loss += recon_loss_bg_dummy * self.cfg.recon_loss_bg_dummy
if self.cfg.riemann_curvature_loss > 0:
riemann_curvature_loss = compute_riemann_curvature_loss(feats_compressed[fg_masks])
self.log("loss/riemann_curvature", riemann_curvature_loss, prog_bar=True)
total_loss += riemann_curvature_loss * self.cfg.riemann_curvature_loss
if self.cfg.axis_align_loss > 0:
axis_align_loss = compute_axis_align_loss(feats_compressed[fg_masks])
self.log("loss/axis_align", axis_align_loss, prog_bar=True)
total_loss += axis_align_loss * self.cfg.axis_align_loss
if self.cfg.repulsion_loss > 0:
repulsion_loss = compute_repulsion_loss(feats_compressed[fg_masks])
self.log("loss/repulsion", repulsion_loss, prog_bar=True)
total_loss += repulsion_loss * self.cfg.repulsion_loss
if self.cfg.boundary_loss > 0:
boundary_loss = compute_boundary_loss(feats_compressed)
self.log("loss/boundary", boundary_loss, prog_bar=True)
total_loss += boundary_loss * self.cfg.boundary_loss
loss = total_loss
self.log("loss/total", loss, prog_bar=True)
return loss
def configure_optimizers(self):
optimizer = torch.optim.NAdam(self.parameters(), lr=self.cfg.lr)
return optimizer
class DatasetWithSimplices(torch.utils.data.Dataset):
def __init__(self, input_feats, target_feats, plus_masks):
self.input_feats = input_feats
self.target_feats = target_feats
self.plus_masks = plus_masks
def __len__(self):
return len(self.input_feats)
def __getitem__(self, idx):
return self.input_feats[idx], self.target_feats[idx], self.plus_masks[idx]
def free_memory():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
import gc
gc.collect()
def train_compression_model(model, cfg: DictConfig, input_feats, target_feats,
plus_masks=None, devices=[0], compute_fg_mask=False):
free_memory()
b, l, c = input_feats.shape
if compute_fg_mask and plus_masks is None:
plus_masks = get_fg_mask(input_feats)
if plus_masks is None:
plus_masks = torch.ones((b*l)).bool()
plus_masks = plus_masks.flatten()
input_feats = input_feats.flatten(end_dim=-2)
target_feats = target_feats.flatten(end_dim=-2)
# logger = pl.loggers.TensorBoardLogger(cfg.log_dir, name=cfg.name)
trainer = pl.Trainer(max_steps=cfg.steps,
gradient_clip_val=cfg.grad_clip_val,
accelerator="gpu",
devices=devices,
enable_checkpointing=False,
# logger=logger,
)
dataset = DatasetWithSimplices(input_feats, target_feats, plus_masks)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=cfg.batch_size, shuffle=True)
trainer.fit(model, dataloader)
return trainer |