File size: 27,327 Bytes
791a42e
20b1e63
791a42e
 
20b1e63
791a42e
 
 
6ce511a
791a42e
a73cc09
 
 
3310b58
4d6d18f
3310b58
791a42e
 
 
 
 
 
 
3310b58
 
 
 
 
 
 
 
 
ce6a39f
791a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce6a39f
791a42e
3310b58
 
791a42e
20b1e63
3084697
791a42e
 
 
 
 
58cb775
3310b58
791a42e
 
 
3310b58
791a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58cb775
791a42e
58cb775
07c6bcc
 
 
791a42e
 
66f720d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3310b58
791a42e
 
3310b58
791a42e
 
 
 
 
3310b58
d1a196c
3310b58
d1a196c
 
 
 
791a42e
 
 
 
 
 
58cb775
791a42e
3310b58
 
 
791a42e
 
3310b58
d1a196c
791a42e
3310b58
 
 
791a42e
 
 
 
3310b58
791a42e
3310b58
 
791a42e
3310b58
 
d1a196c
791a42e
3310b58
791a42e
 
3310b58
 
791a42e
 
d1a196c
791a42e
3310b58
791a42e
 
3310b58
d1a196c
791a42e
3310b58
791a42e
 
3310b58
 
 
 
 
 
791a42e
3310b58
 
d1a196c
3310b58
 
 
791a42e
3310b58
791a42e
d1a196c
d738cb0
791a42e
3310b58
791a42e
3310b58
 
d1a196c
791a42e
3310b58
791a42e
 
3310b58
791a42e
3310b58
 
d1a196c
3310b58
 
 
791a42e
3310b58
791a42e
 
3310b58
791a42e
3310b58
 
 
 
791a42e
 
 
 
 
3310b58
791a42e
3310b58
791a42e
3310b58
 
 
 
791a42e
 
 
 
 
3310b58
791a42e
d1a196c
 
 
791a42e
 
d1a196c
 
 
 
 
 
791a42e
d1a196c
 
791a42e
 
 
 
 
 
d1a196c
791a42e
d1a196c
 
 
791a42e
 
d1a196c
 
 
 
 
 
791a42e
d1a196c
 
791a42e
 
 
 
 
 
d1a196c
791a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3310b58
791a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f720d
791a42e
 
 
 
 
 
 
 
 
 
 
 
66f720d
 
 
 
 
07c6bcc
 
 
 
 
66f720d
07c6bcc
791a42e
66f720d
791a42e
 
 
 
 
 
 
 
 
 
 
 
66f720d
 
 
 
 
07c6bcc
 
 
 
 
66f720d
07c6bcc
3310b58
791a42e
 
20b1e63
791a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6bcc
d1a196c
791a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6bcc
d1a196c
3310b58
 
791a42e
 
 
 
d1a196c
791a42e
d1a196c
3310b58
d1a196c
791a42e
 
 
 
 
 
07c6bcc
d1a196c
66f720d
 
791a42e
 
4f79fef
791a42e
07c6bcc
d1a196c
 
66f720d
 
 
 
 
07c6bcc
66f720d
07c6bcc
791a42e
07c6bcc
d1a196c
 
66f720d
 
 
 
07c6bcc
 
66f720d
07c6bcc
791a42e
4f79fef
791a42e
 
 
 
 
 
 
 
 
 
 
 
3310b58
791a42e
 
3310b58
791a42e
3310b58
791a42e
d738cb0
791a42e
 
 
3310b58
 
791a42e
66f720d
3310b58
 
 
791a42e
 
 
3310b58
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import logging, faulthandler, sys, time, tempfile, os, requests, zipfile, io, gc, threading, psutil, json, configargparse
faulthandler.enable()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("jax_ik_server")

def _excepthook(t, v, tb):
    logger.exception("Uncaught exception", exc_info=(t, v, tb))
sys.excepthook = _excepthook

# Environment (CPU only)
os.environ['JAX_PLATFORMS'] = 'cpu'
os.environ['CUDA_VISIBLE_DEVICES'] = ''

import jax
jax.config.update("jax_default_device", "cpu")
import numpy as np

from fastapi import FastAPI, Request, Response
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import FileResponse, JSONResponse

from jax_ik.helper import deform_mesh, load_mesh_data_from_gltf, load_mesh_data_from_urdf
from jax_ik.hand_specification import HandSpecification
from jax_ik.smplx_statics import left_arm_bounds_dict, right_arm_bounds_dict, complete_full_body_bounds_dict
from jax_ik.ik import InverseKinematicsSolver
from jax_ik.objectives import (
    BoneZeroRotationObj,
    CombinedDerivativeObj,
    DistanceObjTraj,
    SphereCollisionPenaltyObjTraj,
)

def download_and_setup_files():
    os.makedirs("files", exist_ok=True)
    # Pepper
    pepper_dir = "files/pepper_description-master"
    if not os.path.isdir(pepper_dir):
        logger.info("Downloading Pepper model...")
        try:
            r = requests.get("https://uni-bielefeld.sciebo.de/s/98Sy5s143XgNntb/download", stream=True); r.raise_for_status()
            with zipfile.ZipFile(io.BytesIO(r.content)) as z: z.extractall("files/")
        except Exception as e:
            logger.warning(f"Pepper download failed: {e}")
    # SMPLX
    smplx_file = "files/smplx.glb"
    if not os.path.isfile(smplx_file):
        logger.info("Downloading SMPLX model...")
        try:
            r = requests.get("https://uni-bielefeld.sciebo.de/s/B5StwQdiR4DW5mc/download"); r.raise_for_status()
            open(smplx_file, "wb").write(r.content)
        except Exception as e:
            logger.warning(f"SMPLX download failed: {e}")

class IKServer:
    def __init__(self, args):
        self.args = args
        self.solve_lock = threading.Lock()
        self.process = psutil.Process(os.getpid())

        # Caches
        self.solver_cache = {}
        self.urdf_solver_cache = {}
        self.max_cache_size = 5
        self.cache_access_order = []
        self.urdf_cache_access_order = []

        # Animation buffers
        self.animation_frames_agent = []
        self.animation_frames_urdf = []

        # FastAPI
        self.app = FastAPI()
        self.app.add_middleware(
            CORSMiddleware,
            allow_origins=["*"], allow_credentials=True,
            allow_methods=["*"], allow_headers=["*"]
        )
        os.makedirs("static", exist_ok=True)
        os.makedirs("files", exist_ok=True)
        self.app.mount("/static", StaticFiles(directory="static"), name="static")
        self.app.mount("/files", StaticFiles(directory="files"), name="files")

        # Init models (once)
        self._init_agent()
        self._setup_agent_objectives()
        self._init_urdf()
        self._setup_urdf_objectives()

        # Cleanup tracking
        self.last_cleanup_time = time.time()
        self.cleanup_interval = 30

        self.agent_solve_counter = 0   # added
        self.urdf_solve_counter  = 0   # added

        self._register_routes()
        logger.info("Server ready.")
        # NEW warmup thread to JIT both solvers early
        if getattr(self.args, 'warmup', True):
            threading.Thread(target=self._warmup_all, daemon=True).start()

    # ---- Warmup helpers (NEW) ----
    def _warmup_agent(self):
        try:
            mand = [DistanceObjTraj(target_points=np.array([0.0,0.2,0.35]), bone_name=self.current_end_effector, use_head=True, weight=1.0)]
            opt = [BoneZeroRotationObj(weight=0.01)]
            _ = self.solver.solve(initial_rotations=self.initial_rotations, learning_rate=self.args.learning_rate,
                                   mandatory_objective_functions=tuple(mand), optional_objective_functions=tuple(opt),
                                   ik_points=1, verbose=False)
            logger.info("Agent warmup complete")
        except Exception as e:
            logger.warning(f"Agent warmup failed: {e}")
    def _warmup_urdf(self):
        try:
            mand = [DistanceObjTraj(target_points=np.array([0.3,0.3,0.35]), bone_name=self.urdf_current_end_effector, use_head=True, weight=1.0)]
            opt = [BoneZeroRotationObj(weight=0.01)]
            _ = self.urdf_solver.solve(initial_rotations=self.urdf_initial_rotations, learning_rate=self.args.learning_rate,
                                        mandatory_objective_functions=tuple(mand), optional_objective_functions=tuple(opt),
                                        ik_points=1, verbose=False)
            logger.info("URDF warmup complete")
        except Exception as e:
            logger.warning(f"URDF warmup failed: {e}")
    def _warmup_all(self):
        t0 = time.time()
        logger.info("Starting background warmup...")
        self._warmup_agent()
        self._warmup_urdf()
        logger.info(f"Warmup finished in {time.time()-t0:.2f}s")

    # ---------- Cache ----------
    def _evict_lru(self, is_urdf=False):
        cache = self.urdf_solver_cache if is_urdf else self.solver_cache
        order = self.urdf_cache_access_order if is_urdf else self.cache_access_order
        if not order: return
        key = order.pop(0)
        cache.pop(key, None)
        gc.collect()

    def _cache_key(self, bones, num_steps): return tuple(sorted(bones)) + (int(num_steps),)

    def _get_solver(self, bones, is_urdf=False, num_steps=None):
        if num_steps is None:
            num_steps = self.args.num_steps
        key = self._cache_key(bones, num_steps)
        cache = self.urdf_solver_cache if is_urdf else self.solver_cache
        order = self.urdf_cache_access_order if is_urdf else self.cache_access_order
        if key in cache:
            if key in order: order.remove(key)
            order.append(key)
            return cache[key]
        if len(cache) >= self.max_cache_size:
            self._evict_lru(is_urdf)
        if is_urdf:
            solver = InverseKinematicsSolver(
                model_file=self.urdf_file,
                controlled_bones=bones,
                bounds=None,
                threshold=self.args.threshold,
                num_steps=int(num_steps),
                compute_sdf=False,
            )
        else:
            bounds = []
            for b in bones:
                if b in self.bounds_dict:
                    lower, upper = self.bounds_dict[b]
                    bounds.extend(list(zip(lower, upper)))
                else:
                    bounds.extend([(-90, 90)] * 3)
            solver = InverseKinematicsSolver(
                model_file=self.args.gltf_file,
                controlled_bones=bones,
                bounds=bounds,
                threshold=self.args.threshold,
                num_steps=int(num_steps),
                compute_sdf=False,
            )
        cache[key] = solver
        order.append(key)
        return solver

    # ---------- Initialization ----------
    def _init_agent(self):
        self.current_num_steps = self.args.num_steps  # NEW
        basic = InverseKinematicsSolver(
            model_file=self.args.gltf_file,
            controlled_bones=["left_collar"],
            bounds=[(-90,90)]*3,
            threshold=self.args.threshold,
            num_steps=self.current_num_steps,
            compute_sdf=False,
        )
        self.available_bones = basic.fk_solver.bone_names
        self.bounds_dict = complete_full_body_bounds_dict
        if self.args.hand == "left":
            self.default_controlled_bones = list(left_arm_bounds_dict.keys())
            self.default_end_effector = "left_index3"
        else:
            self.default_controlled_bones = list(right_arm_bounds_dict.keys())
            self.default_end_effector = "right_index3"
        self.selectable_bones = [b for b in self.available_bones if b in self.bounds_dict]
        self.current_controlled_bones = self.default_controlled_bones.copy()
        self.current_end_effector = self.default_end_effector
        self.solver = self._get_solver(self.current_controlled_bones, is_urdf=False, num_steps=self.current_num_steps)
        self.initial_rotations = np.zeros(len(self.solver.controlled_bones) * 3, dtype=np.float32)
        self.best_angles = self.initial_rotations.copy()
        self.mesh_data = load_mesh_data_from_gltf(self.args.gltf_file, self.solver.fk_solver)
        self.animation_frames_agent = self._frames_from_angles([self.initial_rotations], False)

    def _init_urdf(self):
        self.urdf_current_num_steps = self.args.num_steps  # NEW
        self.urdf_file = "files/pepper_description-master/urdf/pepper.urdf"
        basic = InverseKinematicsSolver(
            model_file=self.urdf_file,
            controlled_bones=["LShoulder"],
            bounds=None,
            threshold=self.args.threshold,
            num_steps=self.urdf_current_num_steps,
            compute_sdf=False,
        )
        self.urdf_available_bones = basic.fk_solver.bone_names
        self.urdf_default_controlled_bones = ["LShoulder","LBicep","LElbow","LForeArm","l_wrist"]
        self.urdf_default_end_effector = "LFinger13_link"
        self.urdf_selectable_bones = list(self.urdf_available_bones)
        self.urdf_current_controlled_bones = self.urdf_default_controlled_bones.copy()
        self.urdf_current_end_effector = self.urdf_default_end_effector
        self.urdf_solver = self._get_solver(self.urdf_current_controlled_bones, is_urdf=True, num_steps=self.urdf_current_num_steps)
        self.urdf_initial_rotations = np.zeros(len(self.urdf_solver.controlled_bones) * 3, dtype=np.float32)
        self.urdf_best_angles = self.urdf_initial_rotations.copy()
        self.urdf_mesh_data = load_mesh_data_from_urdf(self.urdf_file, self.urdf_solver.fk_solver)
        self.animation_frames_urdf = self._frames_from_angles([self.urdf_initial_rotations], True)

    # ---------- Objectives ----------
    def _setup_agent_objectives(self):
        self.distance_obj = DistanceObjTraj(
            target_points=np.array([0.0,0.2,0.35]),
            bone_name=self.current_end_effector,
            use_head=True,
            weight=1.0,
        )
        self.collision_obj = SphereCollisionPenaltyObjTraj(
            {"center":[0.1,0.0,0.35],"radius":0.1},
            min_clearance=0.0,
            weight=1.0,
        )

    def _setup_urdf_objectives(self):
        self.urdf_distance_obj = DistanceObjTraj(
            target_points=np.array([0.3,0.3,0.35]),
            bone_name=self.urdf_current_end_effector,
            use_head=True,
            weight=1.0,
        )
        self.urdf_collision_obj = SphereCollisionPenaltyObjTraj(
            {"center":[0.2,0.0,0.35],"radius":0.1},
            min_clearance=0.0,
            weight=1.0,
        )

    # ---------- Configuration ----------
    def configure_agent(self, bones, eff, num_steps=None):
        if num_steps is None:
            num_steps = self.current_num_steps
        if not bones: bones = self.default_controlled_bones
        if eff not in self.available_bones: eff = self.default_end_effector
        changed = (
            bones != self.current_controlled_bones or
            eff != self.current_end_effector or
            int(num_steps) != int(self.current_num_steps)
        )
        if bones != self.current_controlled_bones or int(num_steps) != int(self.current_num_steps):
            self.current_controlled_bones = bones
            self.current_num_steps = int(num_steps)
            self.solver = self._get_solver(bones, is_urdf=False, num_steps=self.current_num_steps)
            self.initial_rotations = np.zeros(len(self.solver.controlled_bones)*3, dtype=np.float32)
            self.best_angles = self.initial_rotations.copy()
        if eff != self.current_end_effector:
            self.current_end_effector = eff
        if changed:
            self._setup_agent_objectives()
        return {"controlled_bones": self.current_controlled_bones, "end_effector": self.current_end_effector, "num_steps": self.current_num_steps}

    def configure_urdf(self, bones, eff, num_steps=None):
        if num_steps is None:
            num_steps = self.urdf_current_num_steps
        if not bones: bones = self.urdf_default_controlled_bones
        if eff not in self.urdf_available_bones: eff = self.urdf_default_end_effector
        changed = (
            bones != self.urdf_current_controlled_bones or
            eff != self.urdf_current_end_effector or
            int(num_steps) != int(self.urdf_current_num_steps)
        )
        if bones != self.urdf_current_controlled_bones or int(num_steps) != int(self.urdf_current_num_steps):
            self.urdf_current_controlled_bones = bones
            self.urdf_current_num_steps = int(num_steps)
            self.urdf_solver = self._get_solver(bones, is_urdf=True, num_steps=self.urdf_current_num_steps)
            self.urdf_initial_rotations = np.zeros(len(self.urdf_solver.controlled_bones)*3, dtype=np.float32)
            self.urdf_best_angles = self.urdf_initial_rotations.copy()
        if eff != self.urdf_current_end_effector:
            self.urdf_current_end_effector = eff
        if changed:
            self._setup_urdf_objectives()
        return {"controlled_bones": self.urdf_current_controlled_bones, "end_effector": self.urdf_current_end_effector, "num_steps": self.urdf_current_num_steps}

    # ---------- Objectives build ----------
    def _build_agent_objectives(self, payload):
        tgt = np.array(payload.get("target",[0.0,0.2,0.35]))
        self.distance_obj.update_params({"bone_name": self.current_end_effector, "target_points": tgt, "weight": float(payload.get("distance_weight",1.0))})
        self.collision_obj.update_params({"weight": float(payload.get("collision_weight",1.0))})
        subpoints = int(payload.get("subpoints",1))
        mandatory, optional = [], []
        if payload.get("distance_enabled", True): mandatory.append(self.distance_obj)
        if payload.get("collision_enabled", False): optional.append(self.collision_obj)
        if payload.get("bone_zero_enabled", True):
            optional.append(BoneZeroRotationObj(weight=float(payload.get("bone_zero_weight",0.05))))
        if payload.get("derivative_enabled", True) and subpoints > 1:
            optional.append(CombinedDerivativeObj(max_order=3, weights=[float(payload.get("derivative_weight",0.05))]*3))
        elif not payload.get("bone_zero_enabled", True) and not payload.get("derivative_enabled", True):
            optional.append(BoneZeroRotationObj(weight=0.01))
        # Hand spec
        hand_shape = payload.get("hand_shape","None")
        hand_position = payload.get("hand_position","None")
        params = {
            "is_pointing": hand_shape=="Pointing",
            "is_shaping": hand_shape=="Shaping",
            "is_flat": hand_shape=="Flat",
            "look_forward": hand_position=="Look Forward",
            "look_45_up": hand_position=="Look 45° Up",
            "look_45_down": hand_position=="Look 45° Down",
            "look_up": hand_position=="Look Up",
            "look_down": hand_position=="Look Down",
            "look_45_x_downwards": hand_position=="Look 45° X Downwards",
            "look_45_x_upwards": hand_position=="Look 45° X Upwards",
            "look_x_inward": hand_position=="Look X Inward",
            "look_to_body": hand_position=="Look to Body",
            "arm_down": hand_position=="Arm Down",
            "arm_45_down": hand_position=="Arm 45° Down",
            "arm_flat": hand_position=="Arm Flat",
        }
        if any(params.values()):
            spec = HandSpecification(**params)
            optional.extend(spec.get_objectives(
                left_hand=self.args.hand=="left",
                controlled_bones=self.current_controlled_bones,
                full_trajectory=subpoints>1,
                last_position=True,
                weight=0.5,
            ))
        return mandatory, optional, subpoints

    def _build_urdf_objectives(self, payload):
        tgt = np.array(payload.get("target",[0.3,0.3,0.35]))
        self.urdf_distance_obj.update_params({"bone_name": self.urdf_current_end_effector, "target_points": tgt, "weight": float(payload.get("distance_weight",1.0))})
        self.urdf_collision_obj.update_params({"weight": float(payload.get("collision_weight",1.0))})
        subpoints = int(payload.get("subpoints",1))
        mandatory, optional = [], []
        if payload.get("distance_enabled", True): mandatory.append(self.urdf_distance_obj)
        if payload.get("collision_enabled", False): optional.append(self.urdf_collision_obj)
        if payload.get("bone_zero_enabled", True):
            optional.append(BoneZeroRotationObj(weight=float(payload.get("bone_zero_weight",0.05))))
        if payload.get("derivative_enabled", True) and subpoints > 1:
            optional.append(CombinedDerivativeObj(max_order=3, weights=[float(payload.get("derivative_weight",0.05))]*3))
        elif not payload.get("bone_zero_enabled", True) and not payload.get("derivative_enabled", True):
            optional.append(BoneZeroRotationObj(weight=0.01))
        return mandatory, optional, subpoints

    # ---------- Solving ----------
    def _frames_from_angles(self, angles_seq, is_urdf):
        frames = []
        for ang in angles_seq:
            if is_urdf:
                verts = deform_mesh(ang, self.urdf_solver.fk_solver, self.urdf_mesh_data)
                faces = self.urdf_mesh_data["faces"]
            else:
                verts = deform_mesh(ang, self.solver.fk_solver, self.mesh_data)
                faces = self.mesh_data["faces"]
            frames.append({"vertices": verts.tolist(), "faces": faces.tolist()})
        return frames

    def solve_agent(self, payload, last_only=False):
        mand, opt, sub = self._build_agent_objectives(payload)
        start = time.time()
        best_angles, obj_val, steps = self.solver.solve(
            initial_rotations=self.initial_rotations,
            learning_rate=self.args.learning_rate,
            mandatory_objective_functions=tuple(mand),
            optional_objective_functions=tuple(opt),
            ik_points=sub,
            verbose=False,
        )
        self.best_angles = best_angles[-1].copy()
        self.initial_rotations = self.best_angles.copy()
        if last_only:
            self.animation_frames_agent = self._frames_from_angles([best_angles[-1]], False)
        else:
            self.animation_frames_agent = self._frames_from_angles(best_angles, False)
        self.agent_solve_counter += 1
        return {
            "solve_time": time.time()-start,
            "iterations": steps,
            "objective": obj_val,
            "frames": len(self.animation_frames_agent),
            "solve_id": self.agent_solve_counter,
        }

    def solve_urdf(self, payload, last_only=False):
        mand, opt, sub = self._build_urdf_objectives(payload)
        start = time.time()
        best_angles, obj_val, steps = self.urdf_solver.solve(
            initial_rotations=self.urdf_initial_rotations,
            learning_rate=self.args.learning_rate,
            mandatory_objective_functions=tuple(mand),
            optional_objective_functions=tuple(opt),
            ik_points=sub,
            verbose=False,
        )
        self.urdf_best_angles = best_angles[-1].copy()
        self.urdf_initial_rotations = self.urdf_best_angles.copy()
        if last_only:
            self.animation_frames_urdf = self._frames_from_angles([best_angles[-1]], True)
        else:
            self.animation_frames_urdf = self._frames_from_angles(best_angles, True)
        self.urdf_solve_counter += 1
        return {
            "solve_time": time.time()-start,
            "iterations": steps,
            "objective": obj_val,
            "frames": len(self.animation_frames_urdf),
            "solve_id": self.urdf_solve_counter,
        }

    # ---------- Housekeeping ----------
    def _cleanup(self):
        now = time.time()
        if now - self.last_cleanup_time < self.cleanup_interval: return
        gc.collect()
        self.last_cleanup_time = now

    # ---------- API ----------
    def _register_routes(self):
        @self.app.get("/")
        def index(): return FileResponse("static/index.html")

        @self.app.get("/threejs_viewer")
        def legacy(): return FileResponse("static/index.html")

        @self.app.get("/animation")
        def animation(request: Request):
            model = request.query_params.get("model","agent").lower()
            data = self.animation_frames_urdf if model == "pepper" else self.animation_frames_agent
            return Response(content=json.dumps(data), media_type="application/json")

        @self.app.get("/config")
        def cfg(model: str = "agent"):
            if model.lower() == "pepper":
                return {
                    "model":"pepper",
                    "available_bones": self.urdf_available_bones,
                    "selectable_bones": self.urdf_selectable_bones,
                    "default_controlled_bones": self.urdf_current_controlled_bones,
                    "default_end_effector": self.urdf_current_end_effector,
                    "end_effector_choices": self.urdf_available_bones,
                    "hand_shapes": [],
                    "hand_positions": [],
                    "max_subpoints": 20,  # added
                    "default_num_steps": self.urdf_current_num_steps,  # NEW
                }
            return {
                "model":"agent",
                "available_bones": self.available_bones,
                "selectable_bones": self.selectable_bones,
                "default_controlled_bones": self.current_controlled_bones,
                "default_end_effector": self.current_end_effector,
                "end_effector_choices": self.available_bones,
                "hand_shapes":["None","Pointing","Shaping","Flat"],
                "hand_positions":[
                    "None","Look Forward","Look 45° Up","Look 45° Down","Look Up","Look Down",
                    "Look 45° X Downwards","Look 45° X Upwards","Look X Inward","Look to Body",
                    "Arm Down","Arm 45° Down","Arm Flat"
                ],
                "max_subpoints": 20,  # added
                "default_num_steps": self.current_num_steps,  # NEW
            }

        @self.app.post("/configure")
        async def configure(request: Request):
            payload = await request.json()
            model = payload.get("model","agent").lower()
            num_steps = int(payload.get("num_steps", self.args.num_steps))
            if model == "pepper":
                cfg = self.configure_urdf(payload.get("controlled_bones", []), payload.get("end_effector"), num_steps=num_steps)
            else:
                cfg = self.configure_agent(payload.get("controlled_bones", []), payload.get("end_effector"), num_steps=num_steps)
            return JSONResponse({"status":"ok","config":cfg})

        @self.app.post("/solve")
        async def solve(request: Request):
            payload = await request.json()
            model = payload.get("model","agent").lower()
            return_mode = payload.get("frames_mode", "auto")
            num_steps = int(payload.get("num_steps", self.args.num_steps))  # NEW
            subpoints = int(payload.get("subpoints",1))
            last_only = (return_mode != 'all' and subpoints == 1)
            self._cleanup()
            with self.solve_lock:
                try:
                    if model == "pepper":
                        self.configure_urdf(payload.get("controlled_bones", []),
                                            payload.get("end_effector", self.urdf_current_end_effector),
                                            num_steps=num_steps)
                        result = self.solve_urdf(payload, last_only=last_only); result["model"]="pepper"; result["num_steps"] = num_steps
                        if last_only:
                            frames = list(self.animation_frames_urdf)  # only one frame
                        elif return_mode == "all" or (return_mode == "auto" and subpoints > 1):
                            frames = list(self.animation_frames_urdf)
                        else:
                            frames = [self.animation_frames_urdf[-1]]
                        result["frames_data"] = frames
                    else:
                        self.configure_agent(payload.get("controlled_bones", []),
                                             payload.get("end_effector", self.current_end_effector),
                                             num_steps=num_steps)
                        result = self.solve_agent(payload, last_only=last_only); result["model"]="agent"; result["num_steps"] = num_steps
                        if last_only:
                            frames = list(self.animation_frames_agent)
                        elif return_mode == "all" or (return_mode == "auto" and subpoints > 1):
                            frames = list(self.animation_frames_agent)
                        else:
                            frames = [self.animation_frames_agent[-1]]
                        result["frames_data"] = frames
                    return JSONResponse({"status":"ok","result":result})
                except Exception as e:
                    logger.exception("Solve failed")
                    return JSONResponse({"status":"error","message":str(e)}, status_code=500)

        @self.app.get("/health")
        def health():
            return {
                "status":"ok",
                "agent_frames": len(self.animation_frames_agent),
                "urdf_frames": len(self.animation_frames_urdf),
                "cache_agent": len(self.solver_cache),
                "cache_urdf": len(self.urdf_solver_cache),
            }

        @self.app.get("/favicon.ico")
        def favicon(): return Response(status_code=204)

# ---------- Main ----------
def main():
    parser = configargparse.ArgumentParser(description="Inverse Kinematics Solver - Three.js Web UI", default_config_files=["config.ini"])
    parser.add("--gltf_file", type=str, default="files/smplx.glb")
    parser.add("--hand", type=str, choices=["left","right"], default="left")
    parser.add("--threshold", type=float, default=0.0001)
    parser.add("--num_steps", type=int, default=100)
    parser.add("--learning_rate", type=float, default=0.2)
    parser.add("--subpoints", type=int, default=1)
    parser.add("--api_port", type=int, default=17861)
    parser.add("--warmup", action='store_true', default=True, help="Enable background JIT warmup")
    args = parser.parse_args()

    download_and_setup_files()
    srv = IKServer(args)
    import uvicorn
    uvicorn.run(srv.app, host="0.0.0.0", port=args.api_port)

if __name__ == "__main__":
    main()