"""Usage tracking utilities for LegisQA""" import streamlit as st from langchain_core.messages import AIMessage def get_token_usage_for_provider(aimessage: AIMessage, model_info: dict, provider: str): """Get token usage information for any provider""" input_tokens = aimessage.usage_metadata["input_tokens"] output_tokens = aimessage.usage_metadata["output_tokens"] cost = ( input_tokens * 1e-6 * model_info["cost"]["pmi"] + output_tokens * 1e-6 * model_info["cost"]["pmo"] ) return { "input_tokens": input_tokens, "output_tokens": output_tokens, "cost": cost, } def get_token_usage(aimessage: AIMessage, model_info: dict, provider: str): """Get token usage based on provider""" # All providers use the same calculation now return get_token_usage_for_provider(aimessage, model_info, provider) def display_api_usage( aimessage: AIMessage, model_info: dict, provider: str, tag: str | None = None ): """Display API usage information in Streamlit""" with st.container(border=True): if tag is None: st.write("API Usage") else: st.write(f"API Usage ({tag})") token_usage = get_token_usage(aimessage, model_info, provider) col1, col2, col3 = st.columns(3) with col1: st.metric("Input Tokens", token_usage["input_tokens"]) with col2: st.metric("Output Tokens", token_usage["output_tokens"]) with col3: st.metric("Cost", f"${token_usage['cost']:.4f}") with st.expander("AIMessage Metadata"): dd = {key: val for key, val in aimessage.dict().items() if key != "content"} st.write(dd)