Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,572 Bytes
c8a8fcf d683c92 c73cdb0 d683c92 c73cdb0 6abcfff d683c92 c73cdb0 d683c92 c73cdb0 d683c92 8b8b2fe d683c92 6abcfff d683c92 b4a27cf d683c92 41e72bb d683c92 41e72bb d683c92 41e72bb c73cdb0 8b8b2fe 9e195fc 75c54a4 766ae19 75c54a4 9e195fc c73cdb0 d683c92 c73cdb0 d683c92 41e72bb d683c92 41e72bb d683c92 06ce900 d683c92 06ce900 9e195fc 32ba0e7 9e195fc 8323fa2 d683c92 9e195fc 406dc20 d683c92 406dc20 d683c92 766ae19 d683c92 766ae19 d683c92 406dc20 d683c92 9e195fc 406dc20 9e195fc d683c92 9e195fc d683c92 9e195fc c8a8fcf c73cdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
# PyTorch 2.8 (temporary hack)
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
# --- 1. Model Download and Setup (Diffusers Backend) ---
import spaces
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
# Import the optimization function from the separate file
from optimization import optimize_pipeline_
# --- Constants and Model Loading ---
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
# --- NEW: Flexible Dimension Constants ---
MAX_DIMENSION = 720
MIN_DIMENSION = 480
DIMENSION_MULTIPLE = 16
SQUARE_SIZE = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)
default_negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,"
print("Loading models into memory. This may take a few minutes...")
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=8.0)
pipe.to('cuda')
print("Optimizing pipeline...")
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
# Calling the imported optimization function with a placeholder image for compilation tracing
optimize_pipeline_(pipe,
image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)), # Use representative dims
prompt='prompt',
height=MIN_DIMENSION,
width=MAX_DIMENSION,
num_frames=MAX_FRAMES_MODEL,
)
print("All models loaded and optimized. Gradio app is ready.")
# --- 2. Image Processing and Application Logic ---
def process_image_for_video(image: Image.Image) -> Image.Image:
"""
Resizes an image based on the following rules for video generation:
1. The longest side will be scaled down to MAX_DIMENSION if it's larger.
2. The shortest side will be scaled up to MIN_DIMENSION if it's smaller.
3. The final dimensions will be rounded to the nearest multiple of DIMENSION_MULTIPLE.
4. Square images are resized to a fixed SQUARE_SIZE.
The aspect ratio is preserved as closely as possible.
"""
width, height = image.size
# Rule 4: Handle square images
if width == height:
return image.resize((SQUARE_SIZE, SQUARE_SIZE), Image.Resampling.LANCZOS)
# Determine target dimensions while preserving aspect ratio
aspect_ratio = width / height
new_width, new_height = width, height
# Rule 1: Scale down if too large
if new_width > MAX_DIMENSION or new_height > MAX_DIMENSION:
if aspect_ratio > 1: # Landscape
scale = MAX_DIMENSION / new_width
else: # Portrait
scale = MAX_DIMENSION / new_height
new_width *= scale
new_height *= scale
# Rule 2: Scale up if too small
if new_width < MIN_DIMENSION or new_height < MIN_DIMENSION:
if aspect_ratio > 1: # Landscape
scale = MIN_DIMENSION / new_height
else: # Portrait
scale = MIN_DIMENSION / new_width
new_width *= scale
new_height *= scale
# Rule 3: Round to the nearest multiple of DIMENSION_MULTIPLE
final_width = int(round(new_width / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
final_height = int(round(new_height / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
# Ensure final dimensions are at least the minimum
final_width = max(final_width, MIN_DIMENSION if aspect_ratio < 1 else SQUARE_SIZE)
final_height = max(final_height, MIN_DIMENSION if aspect_ratio > 1 else SQUARE_SIZE)
return image.resize((final_width, final_height), Image.Resampling.LANCZOS)
def resize_and_crop_to_match(target_image, reference_image):
"""Resizes and center-crops the target image to match the reference image's dimensions."""
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
scale = max(ref_width / target_width, ref_height / target_height)
new_width, new_height = int(target_width * scale), int(target_height * scale)
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
return resized.crop((left, top, left + ref_width, top + ref_height))
@spaces.GPU(duration=70)
def generate_video(
start_image_pil,
end_image_pil,
prompt,
negative_prompt=default_negative_prompt,
duration_seconds=2.5,
steps=5,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True)
):
"""
Generates a video by interpolating between a start and end image, guided by a text prompt,
using the diffusers Wan2.2 pipeline.
"""
if start_image_pil is None or end_image_pil is None:
raise gr.Error("Please upload both a start and an end image.")
progress(0.1, desc="Preprocessing images...")
# Step 1: Process the start image to get our target dimensions based on the new rules.
processed_start_image = process_image_for_video(start_image_pil)
# Step 2: Make the end image match the *exact* dimensions of the processed start image.
processed_end_image = resize_and_crop_to_match(end_image_pil, processed_start_image)
target_height, target_width = processed_start_image.height, processed_start_image.width
# Handle seed and frame count
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
progress(0.2, desc=f"Generating {num_frames} frames at {target_width}x{target_height} (seed: {current_seed})...")
output_frames_list = pipe(
image=processed_start_image,
last_image=processed_end_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_height,
width=target_width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
progress(0.9, desc="Encoding and saving video...")
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
progress(1.0, desc="Done!")
return video_path, current_seed
# --- 3. Gradio User Interface --- (No changes needed here)
css = '''
.fillable{max-width: 1100px !important}
.dark .progress-text {color: white}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
gr.Markdown("Based on the [Wan 2.2 First/Last Frame workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/), applied to 🧨 Diffusers + [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Row():
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
end_image = gr.Image(type="pil", label="End Frame", sources=["upload", "clipboard"])
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
with gr.Accordion("Advanced Settings", open=False):
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=2.5, label="Video Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=5, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - high noise")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - low noise")
with gr.Row():
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
output_video = gr.Video(label="Generated Video", autoplay=True)
# Define the inputs list for the click event
ui_inputs = [
start_image,
end_image,
prompt,
negative_prompt_input,
duration_seconds_input,
steps_slider,
guidance_scale_input,
guidance_scale_2_input,
seed_input,
randomize_seed_checkbox
]
# The seed_input is both an input and an output to reflect the randomly generated seed
ui_outputs = [output_video, seed_input]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=ui_outputs
)
if __name__ == "__main__":
app.launch(share=True) |