File size: 40,321 Bytes
b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 1d798d1 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 1d798d1 b1acf7e 1d798d1 4b35e49 b1acf7e 4b35e49 b1acf7e d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 b1acf7e d919881 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 d919881 4b35e49 d919881 4b35e49 b1acf7e 4b35e49 b1acf7e 4b35e49 d919881 4b35e49 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e 1d798d1 b1acf7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 |
"""
Refactored Sentiment Fused - Multimodal Sentiment Analysis Application
This is the main entry point for the application, now using a modular structure.
"""
import streamlit as st
import pandas as pd
from PIL import Image
import logging
# Import our modular components
from src.config.settings import (
APP_NAME,
APP_VERSION,
APP_ICON,
APP_LAYOUT,
CUSTOM_CSS,
SUPPORTED_IMAGE_FORMATS,
SUPPORTED_AUDIO_FORMATS,
SUPPORTED_VIDEO_FORMATS,
)
from src.models.text_model import predict_text_sentiment
from src.models.audio_model import predict_audio_sentiment, load_audio_model
from src.models.vision_model import predict_vision_sentiment, load_vision_model
from src.models.fused_model import predict_fused_sentiment
from src.utils.preprocessing import (
extract_frames_from_video,
extract_audio_from_video,
transcribe_audio,
)
from src.utils.file_handling import get_file_info, format_file_size
from src.utils.sentiment_mapping import get_sentiment_colors, format_sentiment_result
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page configuration
st.set_page_config(
page_title=APP_NAME,
page_icon=APP_ICON,
layout=APP_LAYOUT,
initial_sidebar_state="expanded",
)
# Apply custom CSS
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
def render_home_page():
"""Render the home page with model information."""
st.markdown(
f'<h1 class="main-header">{APP_NAME}</h1>',
unsafe_allow_html=True,
)
st.markdown(
"""
<div class="model-card">
<h2>Welcome to your Multi-Modal Sentiment Analysis Testing Platform!</h2>
<p>This application provides a comprehensive testing environment for your three independent sentiment analysis models:</p>
</div>
""",
unsafe_allow_html=True,
)
col1, col2, col3 = st.columns(3)
with col1:
st.markdown(
"""
<div class="model-card">
<h3>Text Sentiment Model</h3>
<p>READY TO USE - Analyze sentiment from text input using TextBlob</p>
<ul>
<li>Process any text input</li>
<li>Get sentiment classification (Positive/Negative/Neutral)</li>
<li>View confidence scores</li>
<li>Real-time NLP analysis</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
with col2:
st.markdown(
"""
<div class="model-card">
<h3>Audio Sentiment Model</h3>
<p>READY TO USE - Analyze sentiment from audio files using fine-tuned Wav2Vec2</p>
<ul>
<li>Upload audio files (.wav, .mp3, .m4a, .flac)</li>
<li>Record audio directly with microphone (max 5s)</li>
<li>Automatic preprocessing: 16kHz sampling, 5s max duration</li>
<li>Listen to uploaded/recorded audio</li>
<li>Get sentiment predictions</li>
<li>Real-time audio analysis</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
with col3:
st.markdown(
"""
<div class="model-card">
<h3>Vision Sentiment Model</h3>
<p>Analyze sentiment from images using fine-tuned ResNet-50</p>
<ul>
<li>Upload image files (.png, .jpg, .jpeg, .bmp, .tiff)</li>
<li>Automatic face detection & preprocessing</li>
<li>Fixed 0% padding for tightest face crop</li>
<li>Convert to 224x224 grayscale β 3-channel RGB (FER2013 format)</li>
<li>Transforms: Resize(224) β CenterCrop(224) β ImageNet Normalization</li>
<li>Preview original & preprocessed images</li>
<li>Get sentiment predictions</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<div class="model-card">
<h3>Fused Model</h3>
<p>Combine predictions from all three models for enhanced accuracy</p>
<ul>
<li>Multi-modal input processing</li>
<li>Ensemble prediction strategies</li>
<li>Comprehensive sentiment analysis</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<div class="model-card">
<h3>π¬ Max Fusion</h3>
<p>Ultimate video-based sentiment analysis combining all three modalities</p>
<ul>
<li>π₯ Record or upload 5-second videos</li>
<li>π Extract frames for vision analysis</li>
<li>π΅ Extract audio for vocal sentiment</li>
<li>π Transcribe audio for text analysis</li>
<li>π Comprehensive multi-modal results</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
st.markdown("---")
st.markdown(
"""
<div style="text-align: center; color: #666;">
<p><strong>Note:</strong> This application now has <strong>ALL THREE MODELS</strong> fully integrated and ready to use!</p>
<p><strong>TextBlob</strong> (Text) + <strong>Wav2Vec2</strong> (Audio) + <strong>ResNet-50</strong> (Vision)</p>
<p><strong>Models are now loaded from Google Drive automatically!</strong></p>
</div>
""",
unsafe_allow_html=True,
)
def render_text_sentiment_page():
"""Render the text sentiment analysis page."""
st.title("Text Sentiment Analysis")
st.markdown("Analyze the sentiment of your text using our TextBlob-based model.")
# Text input
text_input = st.text_area(
"Enter your text here:",
height=150,
placeholder="Type or paste your text here to analyze its sentiment...",
)
# Analyze button
if st.button("Analyze Sentiment", type="primary", use_container_width=True):
if text_input and text_input.strip():
with st.spinner("Analyzing text sentiment..."):
sentiment, confidence = predict_text_sentiment(text_input)
# Display results
st.markdown("### Results")
# Display results in columns
col1, col2 = st.columns(2)
with col1:
st.metric("Sentiment", sentiment)
with col2:
st.metric("Confidence", f"{confidence:.2f}")
# Color-coded sentiment display
sentiment_colors = get_sentiment_colors()
emoji = sentiment_colors.get(sentiment, "β")
st.markdown(
f"""
<div class="result-box">
<h4>{emoji} Sentiment: {sentiment}</h4>
<p><strong>Confidence:</strong> {confidence:.2f}</p>
<p><strong>Input Text:</strong> "{text_input[:100]}{'...' if len(text_input) > 100 else ''}"</p>
<p><strong>Model:</strong> TextBlob (Natural Language Processing)</p>
</div>
""",
unsafe_allow_html=True,
)
else:
st.error("Please enter some text to analyze.")
def render_audio_sentiment_page():
"""Render the audio sentiment analysis page."""
st.title("Audio Sentiment Analysis")
st.markdown(
"Analyze the sentiment of your audio files using our fine-tuned Wav2Vec2 model."
)
# Preprocessing information
st.info(
"**Audio Preprocessing**: Audio will be automatically processed to match CREMA-D + RAVDESS training format: "
"16kHz sampling rate, max 5 seconds, with automatic resampling and feature extraction."
)
# Model status
model, device, num_classes, feature_extractor = load_audio_model()
if model is None:
st.error(
"Audio model could not be loaded. Please check the Google Drive setup."
)
st.info(
"Expected: Models should be configured in Google Drive and accessible via the model manager."
)
else:
st.success(
f"Audio model loaded successfully on {device} with {num_classes} classes!"
)
# Input method selection
st.subheader("Choose Input Method")
input_method = st.radio(
"Select how you want to provide audio:",
["Upload Audio File", "Record Audio"],
horizontal=True,
)
if input_method == "Upload Audio File":
# File uploader
uploaded_audio = st.file_uploader(
"Choose an audio file",
type=SUPPORTED_AUDIO_FORMATS,
help="Supported formats: WAV, MP3, M4A, FLAC",
)
audio_source = "uploaded_file"
audio_name = uploaded_audio.name if uploaded_audio else None
else: # Audio recording
st.markdown(
"""
<div class="model-card">
<h3>Audio Recording</h3>
<p>Record audio directly with your microphone (max 5 seconds).</p>
<p><strong>Note:</strong> Make sure your microphone is accessible and you have permission to use it.</p>
</div>
""",
unsafe_allow_html=True,
)
# Audio recorder
recorded_audio = st.audio_input(
label="Click to start recording",
help="Click the microphone button to start/stop recording. Maximum recording time is 5 seconds.",
)
if recorded_audio is not None:
# Display recorded audio
st.audio(recorded_audio, format="audio/wav")
st.success("Audio recorded successfully!")
# Convert recorded audio to bytes for processing
uploaded_audio = recorded_audio
audio_source = "recorded"
audio_name = "Recorded Audio"
else:
uploaded_audio = None
audio_source = None
audio_name = None
if uploaded_audio is not None:
# Display audio player
if audio_source == "recorded":
st.audio(uploaded_audio, format="audio/wav")
st.info(f"{audio_name} | Source: Microphone Recording")
else:
st.audio(
uploaded_audio, format=f'audio/{uploaded_audio.name.split(".")[-1]}'
)
# File info for uploaded files
file_info = get_file_info(uploaded_audio)
st.info(
f"File: {file_info['name']} | Size: {format_file_size(file_info['size_bytes'])}"
)
# Analyze button
if st.button(
"Analyze Audio Sentiment", type="primary", use_container_width=True
):
if model is None:
st.error("Model not loaded. Cannot analyze audio.")
else:
with st.spinner("Analyzing audio sentiment..."):
audio_bytes = uploaded_audio.getvalue()
sentiment, confidence = predict_audio_sentiment(audio_bytes)
# Display results
st.markdown("### Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Sentiment", sentiment)
with col2:
st.metric("Confidence", f"{confidence:.2f}")
# Color-coded sentiment display
sentiment_colors = get_sentiment_colors()
emoji = sentiment_colors.get(sentiment, "β")
st.markdown(
f"""
<div class="result-box">
<h4>{emoji} Sentiment: {sentiment}</h4>
<p><strong>Confidence:</strong> {confidence:.2f}</p>
<p><strong>Audio Source:</strong> {audio_name}</p>
<p><strong>Model:</strong> Wav2Vec2 (Fine-tuned on RAVDESS + CREMA-D)</p>
</div>
""",
unsafe_allow_html=True,
)
else:
if input_method == "Upload Audio File":
st.info("Please upload an audio file to begin analysis.")
else:
st.info("Click the microphone button above to record audio for analysis.")
def render_vision_sentiment_page():
"""Render the vision sentiment analysis page."""
st.title("Vision Sentiment Analysis")
st.markdown(
"Analyze the sentiment of your images using our fine-tuned ResNet-50 model."
)
st.info(
"**Note**: Images will be automatically preprocessed to match FER2013 format: face detection, grayscale conversion, and 224x224 resize (converted to 3-channel RGB)."
)
# Face cropping is set to 0% (no padding) for tightest crop
st.info("**Face Cropping**: Set to 0% padding for tightest crop on facial features")
# Model status
model, device, num_classes = load_vision_model()
if model is None:
st.error(
"Vision model could not be loaded. Please check the Google Drive setup."
)
st.info(
"Expected: Models should be configured in Google Drive and accessible via the model manager."
)
else:
st.success(
f"Vision model loaded successfully on {device} with {num_classes} classes!"
)
# Input method selection
st.subheader("Choose Input Method")
input_method = st.radio(
"Select how you want to provide an image:",
["Upload Image File", "Take Photo with Camera"],
horizontal=True,
)
if input_method == "Upload Image File":
# File uploader
uploaded_image = st.file_uploader(
"Choose an image file",
type=SUPPORTED_IMAGE_FORMATS,
help="Supported formats: PNG, JPG, JPEG, BMP, TIFF",
)
if uploaded_image is not None:
# Display image
image = Image.open(uploaded_image)
st.image(
image,
caption=f"Uploaded Image: {uploaded_image.name}",
use_container_width=True,
)
# File info
file_info = get_file_info(uploaded_image)
st.info(
f"File: {file_info['name']} | Size: {format_file_size(file_info['size_bytes'])} | Dimensions: {image.size[0]}x{image.size[1]}"
)
# Analyze button
if st.button(
"Analyze Image Sentiment", type="primary", use_container_width=True
):
if model is None:
st.error("Model not loaded. Cannot analyze image.")
else:
with st.spinner("Analyzing image sentiment..."):
sentiment, confidence = predict_vision_sentiment(image)
# Display results
st.markdown("### Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Sentiment", sentiment)
with col2:
st.metric("Confidence", f"{confidence:.2f}")
# Color-coded sentiment display
sentiment_colors = get_sentiment_colors()
emoji = sentiment_colors.get(sentiment, "β")
st.markdown(
f"""
<div class="result-box">
<h4>{emoji} Sentiment: {sentiment}</h4>
<p><strong>Confidence:</strong> {confidence:.2f}</p>
<p><strong>Image File:</strong> {uploaded_image.name}</p>
<p><strong>Model:</strong> ResNet-50 (Fine-tuned on FER2013)</p>
</div>
""",
unsafe_allow_html=True,
)
else: # Camera capture
st.markdown(
"""
<div class="model-card">
<h3>Camera Capture</h3>
<p>Take a photo directly with your camera to analyze its sentiment.</p>
<p><strong>Note:</strong> Make sure your camera is accessible and you have permission to use it.</p>
</div>
""",
unsafe_allow_html=True,
)
# Camera input
camera_photo = st.camera_input(
"Take a photo",
help="Click the camera button to take a photo, or use the upload button to select an existing photo",
)
if camera_photo is not None:
# Display captured image
image = Image.open(camera_photo)
st.image(
image,
caption="Captured Photo",
use_container_width=True,
)
# Image info
st.info(
f"Captured Photo | Dimensions: {image.size[0]}x{image.size[1]} | Format: {image.format}"
)
# Analyze button
if st.button(
"Analyze Photo Sentiment", type="primary", use_container_width=True
):
if model is None:
st.error("Model not loaded. Cannot analyze image.")
else:
with st.spinner("Analyzing photo sentiment..."):
sentiment, confidence = predict_vision_sentiment(image)
# Display results
st.markdown("### Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Sentiment", sentiment)
with col2:
st.metric("Confidence", f"{confidence:.2f}")
# Color-coded sentiment display
sentiment_colors = get_sentiment_colors()
emoji = sentiment_colors.get(sentiment, "β")
st.markdown(
f"""
<div class="result-box">
<h4>{emoji} Sentiment: {sentiment}</h4>
<p><strong>Confidence:</strong> {confidence:.2f}</p>
<p><strong>Image Source:</strong> Camera Capture</p>
<p><strong>Model:</strong> ResNet-50 (Fine-tuned on FER2013)</p>
</div>
""",
unsafe_allow_html=True,
)
# Show info if no image is provided
if input_method == "Upload Image File" and "uploaded_image" not in locals():
st.info("Please upload an image file to begin analysis.")
elif input_method == "Take Photo with Camera" and "camera_photo" not in locals():
st.info("Click the camera button above to take a photo for analysis.")
def render_fused_model_page():
"""Render the fused model analysis page."""
st.title("Fused Model Analysis")
st.markdown(
"Combine predictions from all three models for enhanced sentiment analysis."
)
st.markdown(
"""
<div class="model-card">
<h3>Multi-Modal Sentiment Analysis</h3>
<p>This page allows you to input text, audio, and/or image data to get a comprehensive sentiment analysis
using all three models combined.</p>
</div>
""",
unsafe_allow_html=True,
)
# Input sections
col1, col2 = st.columns(2)
with col1:
st.subheader("Text Input")
text_input = st.text_area(
"Enter text (optional):",
height=100,
placeholder="Type or paste your text here...",
)
st.subheader("Audio Input")
# Audio preprocessing information for fused model
st.info(
"**Audio Preprocessing**: Audio will be automatically processed to match CREMA-D + RAVDESS training format: "
"16kHz sampling rate, max 5 seconds, with automatic resampling and feature extraction."
)
# Audio input method for fused model
audio_input_method = st.radio(
"Audio input method:",
["Upload File", "Record Audio"],
key="fused_audio_method",
horizontal=True,
)
if audio_input_method == "Upload File":
uploaded_audio = st.file_uploader(
"Upload audio file (optional):",
type=SUPPORTED_AUDIO_FORMATS,
key="fused_audio",
)
audio_source = "uploaded_file"
audio_name = uploaded_audio.name if uploaded_audio else None
else:
# Audio recorder for fused model
recorded_audio = st.audio_input(
label="Record audio (optional):",
key="fused_audio_recorder",
help="Click to record audio for sentiment analysis",
)
if recorded_audio is not None:
st.audio(recorded_audio, format="audio/wav")
st.success("Audio recorded successfully!")
uploaded_audio = recorded_audio
audio_source = "recorded"
audio_name = "Recorded Audio"
else:
uploaded_audio = None
audio_source = None
audio_name = None
with col2:
st.subheader("Image Input")
# Face cropping is set to 0% (no padding) for tightest crop
st.info(
"**Face Cropping**: Set to 0% padding for tightest crop on facial features"
)
# Image input method for fused model
image_input_method = st.radio(
"Image input method:",
["Upload File", "Take Photo"],
key="fused_image_method",
horizontal=True,
)
if image_input_method == "Upload File":
uploaded_image = st.file_uploader(
"Upload image file (optional):",
type=SUPPORTED_IMAGE_FORMATS,
key="fused_image",
)
if uploaded_image:
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_container_width=True)
else:
# Camera capture for fused model
camera_photo = st.camera_input(
"Take a photo (optional):",
key="fused_camera",
help="Click to take a photo for sentiment analysis",
)
if camera_photo:
image = Image.open(camera_photo)
st.image(image, caption="Captured Photo", use_container_width=True)
# Set uploaded_image to camera_photo for processing
uploaded_image = camera_photo
if uploaded_audio:
st.audio(
uploaded_audio, format=f'audio/{uploaded_audio.name.split(".")[-1]}'
)
# Analyze button
if st.button("Run Fused Analysis", type="primary", use_container_width=True):
if text_input or uploaded_audio or uploaded_image:
with st.spinner("Running fused sentiment analysis..."):
# Prepare inputs
audio_bytes = uploaded_audio.getvalue() if uploaded_audio else None
image = Image.open(uploaded_image) if uploaded_image else None
# Get fused prediction
sentiment, confidence = predict_fused_sentiment(
text=text_input if text_input else None,
audio_bytes=audio_bytes,
image=image,
)
# Display results
st.markdown("### Fused Model Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Final Sentiment", sentiment)
with col2:
st.metric("Overall Confidence", f"{confidence:.2f}")
# Show individual model results
st.markdown("### Individual Model Results")
results_data = []
if text_input:
text_sentiment, text_conf = predict_text_sentiment(text_input)
results_data.append(
{
"Model": "Text (TextBlob)",
"Input": f"Text: {text_input[:50]}...",
"Sentiment": text_sentiment,
"Confidence": f"{text_conf:.2f}",
}
)
if uploaded_audio:
audio_sentiment, audio_conf = predict_audio_sentiment(audio_bytes)
results_data.append(
{
"Model": "Audio (Wav2Vec2)",
"Input": f"Audio: {audio_name}",
"Sentiment": audio_sentiment,
"Confidence": f"{audio_conf:.2f}",
}
)
if uploaded_image:
# Face cropping is set to 0% (no padding) for tightest crop
vision_sentiment, vision_conf = predict_vision_sentiment(
image, crop_tightness=0.0
)
results_data.append(
{
"Model": "Vision (ResNet-50)",
"Input": f"Image: {uploaded_image.name}",
"Sentiment": vision_sentiment,
"Confidence": f"{vision_conf:.2f}",
}
)
if results_data:
df = pd.DataFrame(results_data)
st.dataframe(df, use_container_width=True)
# Final result display
sentiment_colors = get_sentiment_colors()
emoji = sentiment_colors.get(sentiment, "β")
st.markdown(
f"""
<div class="result-box">
<h4>{emoji} Final Fused Sentiment: {sentiment}</h4>
<p><strong>Overall Confidence:</strong> {confidence:.2f}</p>
<p><strong>Models Used:</strong> {len(results_data)}</p>
</div>
""",
unsafe_allow_html=True,
)
else:
st.warning(
"Please provide at least one input (text, audio, or image) for fused analysis."
)
def render_max_fusion_page():
"""Render the max fusion page for video-based analysis."""
st.title("Max Fusion - Multi-Modal Sentiment Analysis")
st.markdown(
"""
<div class="model-card">
<h3>Ultimate Multi-Modal Sentiment Analysis</h3>
<p>Take photos with camera or upload videos to get comprehensive sentiment analysis from multiple modalities:</p>
<ul>
<li>πΈ <strong>Vision Analysis:</strong> Camera photos or video frames for facial expression analysis</li>
<li>π΅ <strong>Audio Analysis:</strong> Audio files or extracted audio from videos for vocal sentiment</li>
<li>π <strong>Text Analysis:</strong> Transcribed audio for text sentiment analysis</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
# Video input method selection
st.subheader("Video Input")
video_input_method = st.radio(
"Choose input method:",
["Upload Video File", "Record Video (Coming Soon)"],
horizontal=True,
index=0, # Default to upload video
)
if video_input_method == "Record Video (Coming Soon)":
# Coming Soon message for video recording
st.info("π₯ Video recording feature is coming soon!")
st.info("π Please use the Upload Video File option for now.")
# Show a nice coming soon message
st.markdown("---")
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.markdown(
"""
<div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); border-radius: 10px; color: white;">
<h3>π§ Coming Soon π§</h3>
<p>Video recording feature is under development</p>
<p>Use Upload Video File for now!</p>
</div>
""",
unsafe_allow_html=True,
)
# Placeholder for future recording functionality
st.markdown(
"""
**Future Features:**
- Real-time video recording with camera
- Audio capture during recording
- Automatic frame extraction
- Live transcription
- WebRTC integration for low-latency streaming
"""
)
# Skip all the recording logic for now
uploaded_video = None
video_source = None
video_name = None
video_file = None
elif video_input_method == "Upload Video File":
# File upload option
st.markdown(
"""
<div class="upload-section">
<h4>π Upload Video File</h4>
<p>Upload a video file for comprehensive multimodal analysis.</p>
<p><strong>Supported Formats:</strong> MP4, AVI, MOV, MKV, WMV, FLV</p>
<p><strong>Recommended:</strong> Videos with clear audio and visual content</p>
</div>
""",
unsafe_allow_html=True,
)
uploaded_video = st.file_uploader(
"Choose a video file",
type=SUPPORTED_VIDEO_FORMATS,
help="Supported formats: MP4, AVI, MOV, MKV, WMV, FLV",
)
video_source = "uploaded_file"
video_name = uploaded_video.name if uploaded_video else None
video_file = uploaded_video
if video_file is not None:
# Display video or photo
if video_source == "camera_photo":
# For camera photos, we already displayed the image above
st.info(f"Source: Camera Photo | Ready for vision analysis")
# Add audio upload option for camera photo mode
st.subheader("π΅ Audio Input for Analysis")
st.info(
"Since we're using a photo, please upload an audio file for audio sentiment analysis:"
)
uploaded_audio = st.file_uploader(
"Upload audio file for audio analysis:",
type=SUPPORTED_AUDIO_FORMATS,
key="camera_audio",
help="Upload an audio file to complement the photo analysis",
)
if uploaded_audio:
st.audio(
uploaded_audio, format=f'audio/{uploaded_audio.name.split(".")[-1]}'
)
st.success("β
Audio uploaded successfully!")
audio_bytes = uploaded_audio.getvalue()
else:
audio_bytes = None
st.warning("β οΈ Please upload an audio file for complete analysis")
else:
# For uploaded videos
st.video(video_file)
file_info = get_file_info(video_file)
st.info(
f"File: {file_info['name']} | Size: {format_file_size(file_info['size_bytes'])}"
)
audio_bytes = None # Will be extracted from video
# Video Processing Pipeline
st.subheader("π¬ Video Processing Pipeline")
# Initialize variables
frames = []
audio_bytes = None
transcribed_text = ""
# Process uploaded video
if uploaded_video:
st.info("π Processing uploaded video file...")
# Extract frames
st.markdown("**1. π₯ Frame Extraction**")
frames = extract_frames_from_video(uploaded_video, max_frames=5)
if frames:
st.success(f"β
Extracted {len(frames)} representative frames")
# Display extracted frames
cols = st.columns(len(frames))
for i, frame in enumerate(frames):
with cols[i]:
st.image(
frame, caption=f"Frame {i+1}", use_container_width=True
)
else:
st.warning("β οΈ Could not extract frames from video")
frames = []
# Extract audio
st.markdown("**2. π΅ Audio Extraction**")
audio_bytes = extract_audio_from_video(uploaded_video)
if audio_bytes:
st.success("β
Audio extracted successfully")
st.audio(audio_bytes, format="audio/wav")
else:
st.warning("β οΈ Could not extract audio from video")
audio_bytes = None
# Transcribe audio
st.markdown("**3. π Audio Transcription**")
if audio_bytes:
transcribed_text = transcribe_audio(audio_bytes)
if transcribed_text:
st.success("β
Audio transcribed successfully")
st.markdown(f'**Transcribed Text:** "{transcribed_text}"')
else:
st.warning("β οΈ Could not transcribe audio")
transcribed_text = ""
else:
transcribed_text = ""
st.info("βΉοΈ No audio available for transcription")
# Analysis button
if st.button(
"π Run Max Fusion Analysis", type="primary", use_container_width=True
):
with st.spinner(
"π Processing video and running comprehensive analysis..."
):
# Run individual analyses
st.subheader("π Individual Model Analysis")
results_data = []
# Vision analysis (use first frame for uploaded videos)
if frames:
st.markdown("**Vision Analysis:**")
# For uploaded videos, use first frame
vision_sentiment, vision_conf = predict_vision_sentiment(
frames[0], crop_tightness=0.0
)
results_data.append(
{
"Model": "Vision (ResNet-50)",
"Input": f"Video Frame 1",
"Sentiment": vision_sentiment,
"Confidence": f"{vision_conf:.2f}",
}
)
st.success(
f"Vision: {vision_sentiment} (Confidence: {vision_conf:.2f})"
)
# Audio analysis
if audio_bytes:
st.markdown("**Audio Analysis:**")
audio_sentiment, audio_conf = predict_audio_sentiment(audio_bytes)
results_data.append(
{
"Model": "Audio (Wav2Vec2)",
"Input": f"Video Audio",
"Sentiment": audio_sentiment,
"Confidence": f"{audio_conf:.2f}",
}
)
st.success(
f"Audio: {audio_sentiment} (Confidence: {audio_conf:.2f})"
)
# Text analysis
if transcribed_text:
st.markdown("**Text Analysis:**")
text_sentiment, text_conf = predict_text_sentiment(transcribed_text)
results_data.append(
{
"Model": "Text (TextBlob)",
"Input": f"Transcribed: {transcribed_text[:50]}...",
"Sentiment": text_sentiment,
"Confidence": f"{text_conf:.2f}",
}
)
st.success(f"Text: {text_sentiment} (Confidence: {text_conf:.2f})")
# Run fused analysis
st.subheader("π― Max Fusion Results")
if results_data:
# Display results table
df = pd.DataFrame(results_data)
st.dataframe(df, use_container_width=True)
# Calculate fused sentiment
image_for_fusion = frames[0] if frames else None
sentiment, confidence = predict_fused_sentiment(
text=transcribed_text if transcribed_text else None,
audio_bytes=audio_bytes,
image=image_for_fusion,
)
# Display final results
col1, col2 = st.columns(2)
with col1:
st.metric("π― Final Sentiment", sentiment)
with col2:
st.metric("π Overall Confidence", f"{confidence:.2f}")
# Color-coded sentiment display
sentiment_colors = get_sentiment_colors()
emoji = sentiment_colors.get(sentiment, "β")
st.markdown(
f"""
<div class="result-box">
<h4>{emoji} Max Fusion Sentiment: {sentiment}</h4>
<p><strong>Overall Confidence:</strong> {confidence:.2f}</p>
<p><strong>Modalities Analyzed:</strong> {len(results_data)}</p>
<p><strong>Video Source:</strong> {video_name}</p>
<p><strong>Analysis Type:</strong> Comprehensive Multi-Modal Sentiment Analysis</p>
</div>
""",
unsafe_allow_html=True,
)
else:
st.error(
"β No analysis could be performed. Please check your video input."
)
else:
if video_input_method == "Record Video (Coming Soon)":
st.info(
"π₯ Video recording feature is coming soon! Please use Upload Video File for now."
)
else:
st.info("π Please upload a video file to begin Max Fusion analysis.")
def main():
"""Main application function."""
# Sidebar navigation
st.sidebar.title("Sentiment Analysis")
st.sidebar.markdown("---")
# Navigation
page = st.sidebar.selectbox(
"Choose a page:",
[
"Home",
"Text Sentiment",
"Audio Sentiment",
"Vision Sentiment",
"Fused Model",
"Max Fusion",
],
)
# Page routing
if page == "Home":
render_home_page()
elif page == "Text Sentiment":
render_text_sentiment_page()
elif page == "Audio Sentiment":
render_audio_sentiment_page()
elif page == "Vision Sentiment":
render_vision_sentiment_page()
elif page == "Fused Model":
render_fused_model_page()
elif page == "Max Fusion":
render_max_fusion_page()
# Footer
st.markdown("---")
st.markdown(
"""
<div style="text-align: center; color: #666; padding: 1rem;">
<p>Built with β€οΈ | by <a href="https://github.com/iamfaham">iamfaham</a></p>
<p>Version: {version}</p>
</div>
""".format(
version=APP_VERSION
),
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()
|