multimodal-sentiment-analysis / src /utils /simple_model_manager.py
Faham
UPDATE: codebase refactored to be more readble and optimized
b1acf7e
import os
import gdown
from pathlib import Path
import logging
from typing import Tuple, Any
import torch
import torch.nn as nn
from torchvision import models
from dotenv import load_dotenv
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SimpleModelManager:
"""Simple model manager that downloads models from Google Drive using gdown"""
def __init__(self, model_dir: str = "model_weights", cache_models: bool = True):
"""
Initialize simple model manager
Args:
model_dir: Local directory to store models
cache_models: Whether to cache models locally
"""
self.model_dir = Path(model_dir)
self.model_dir.mkdir(exist_ok=True)
self.cache_models = cache_models
# Load model links from environment variables
self.model_links = {
"vision": {
"url": os.getenv("VISION_MODEL_DRIVE_ID", ""),
"filename": os.getenv("VISION_MODEL_FILENAME", "resnet50_model.pth"),
"description": "Vision sentiment analysis model",
},
"audio": {
"url": os.getenv("AUDIO_MODEL_DRIVE_ID", ""),
"filename": os.getenv("AUDIO_MODEL_FILENAME", "wav2vec2_model.pth"),
"description": "Audio sentiment analysis model",
},
}
# Validate that environment variables are set
self._validate_environment()
def _validate_environment(self):
"""Validate that required environment variables are set"""
missing_vars = []
if not self.model_links["vision"]["url"]:
missing_vars.append("VISION_MODEL_DRIVE_ID")
if not self.model_links["audio"]["url"]:
missing_vars.append("AUDIO_MODEL_DRIVE_ID")
if missing_vars:
logger.warning(f"Missing environment variables: {', '.join(missing_vars)}")
logger.warning("Please set these in your .env file or environment")
logger.warning("Models will not be available until these are configured")
def download_from_google_drive(self, share_url: str, filename: str) -> str:
"""
Download file from Google Drive share link using gdown
Args:
share_url: Google Drive share link
filename: Name to save the file as
Returns:
Path to downloaded file
"""
try:
local_path = self.model_dir / filename
if local_path.exists() and self.cache_models:
logger.info(f"Model already cached: {local_path}")
return str(local_path)
logger.info(f"Downloading {filename} from Google Drive using gdown...")
# Use gdown to download the file
# gdown automatically handles virus scan warnings and other Google Drive issues
output_path = str(local_path)
# Download with progress bar
gdown.download(
id=share_url,
output=output_path,
quiet=False, # Show progress bar
fuzzy=True, # Handle various Google Drive URL formats
)
# Verify the file was downloaded
if not Path(output_path).exists():
raise FileNotFoundError(f"Download failed: {output_path} not found")
file_size = Path(output_path).stat().st_size
if file_size == 0:
raise ValueError(f"Downloaded file is empty: {output_path}")
logger.info(f"Successfully downloaded {filename} ({file_size} bytes)")
return output_path
except Exception as e:
logger.error(f"Failed to download {filename}: {e}")
raise
def load_vision_model(self) -> Tuple[Any, torch.device, int]:
"""Load vision sentiment model"""
try:
model_info = self.model_links["vision"]
# Check if URL is configured
if not model_info["url"]:
raise ValueError("VISION_MODEL_DRIVE_ID environment variable not set")
model_path = self.download_from_google_drive(
model_info["url"], model_info["filename"]
)
# Validate the downloaded file
if not Path(model_path).exists():
raise FileNotFoundError(f"Model file not found at {model_path}")
file_size = Path(model_path).stat().st_size
if file_size == 0:
raise ValueError(f"Model file is empty: {model_path}")
# Check file header to see what type of file it is
with open(model_path, "rb") as f:
header = f.read(100) # Read first 100 bytes
logger.info(f"File size: {file_size} bytes")
logger.info(f"File header (first 100 bytes): {header[:50]}...")
# Try to detect file type
if header.startswith(b"<"):
raise ValueError(
f"File appears to be HTML/XML, not a PyTorch model: {model_path}"
)
elif header.startswith(b"\x89PNG"):
raise ValueError(f"File appears to be a PNG image: {model_path}")
elif header.startswith(b"\xff\xd8\xff"):
raise ValueError(f"File appears to be a JPEG image: {model_path}")
# For any other file type (including ZIP), try to load it directly as a PyTorch model
logger.info(
f"File appears to be a PyTorch model file, attempting to load directly..."
)
# Load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
# Try loading the file directly as a PyTorch model
checkpoint = torch.load(
model_path, map_location=device, weights_only=False
)
logger.info("Successfully loaded model file directly")
except Exception as load_error:
logger.error(f"Failed to load model directly: {load_error}")
try:
# Try with weights only as fallback
checkpoint = torch.load(
model_path, map_location=device, weights_only=True
)
logger.info("Loaded with weights_only=True (weights only)")
except Exception as fallback_error:
logger.error(
f"Failed to load with weights_only=True: {fallback_error}"
)
raise ValueError(
f"Cannot load model file {model_path}. File may be corrupted or in wrong format."
)
# Initialize ResNet-50 model
model = models.resnet50(weights=None)
num_ftrs = model.fc.in_features
# Determine number of classes from checkpoint
if "fc.weight" in checkpoint:
num_classes = checkpoint["fc.weight"].shape[0]
else:
num_classes = 3 # Default fallback
model.fc = nn.Linear(num_ftrs, num_classes)
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
logger.info(f"Vision model loaded successfully with {num_classes} classes!")
return model, device, num_classes
except Exception as e:
logger.error(f"Failed to load vision model: {e}")
raise
def load_audio_model(self) -> Tuple[Any, torch.device]:
"""Load audio sentiment model"""
try:
model_info = self.model_links["audio"]
# Check if URL is configured
if not model_info["url"]:
raise ValueError("AUDIO_MODEL_DRIVE_ID environment variable not set")
model_path = self.download_from_google_drive(
model_info["url"], model_info["filename"]
)
# Validate the downloaded file
if not Path(model_path).exists():
raise FileNotFoundError(f"Model file not found at {model_path}")
file_size = Path(model_path).stat().st_size
if file_size == 0:
raise ValueError(f"Model file is empty: {model_path}")
# Check file header to see what type of file it is
with open(model_path, "rb") as f:
header = f.read(100) # Read first 100 bytes
logger.info(f"File size: {file_size} bytes")
logger.info(f"File header (first 100 bytes): {header[:50]}...")
# Try to detect file type
if header.startswith(b"<"):
raise ValueError(
f"File appears to be HTML/XML, not a PyTorch model: {model_path}"
)
elif header.startswith(b"\x89PNG"):
raise ValueError(f"File appears to be a PNG image: {model_path}")
elif header.startswith(b"\xff\xd8\xff"):
raise ValueError(f"File appears to be a JPEG image: {model_path}")
# For any other file type (including ZIP), try to load it directly as a PyTorch model
logger.info(
f"File appears to be a PyTorch model file, attempting to load directly..."
)
# Load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
# Try loading the file directly as a PyTorch model
checkpoint = torch.load(
model_path, map_location=device, weights_only=False
)
logger.info("Successfully loaded model file directly")
except Exception as load_error:
logger.error(f"Failed to load model directly: {load_error}")
try:
# Try with weights only as fallback
checkpoint = torch.load(
model_path, map_location=device, weights_only=True
)
logger.info("Loaded with weights_only=True (weights only)")
except Exception as fallback_error:
logger.error(
f"Failed to load with weights_only=True: {fallback_error}"
)
raise ValueError(
f"Cannot load model file {model_path}. File may be corrupted or in wrong format."
)
# Check if we have a state dict or a full model
if isinstance(checkpoint, dict) and "classifier.weight" in checkpoint:
# This is a state dictionary - we need to initialize the model first
from transformers import AutoModelForAudioClassification
# Determine number of classes from checkpoint
if "classifier.weight" in checkpoint:
num_classes = checkpoint["classifier.weight"].shape[0]
else:
num_classes = 3 # Default fallback
# Initialize Wav2Vec2 model with the correct number of classes
model = AutoModelForAudioClassification.from_pretrained(
"facebook/wav2vec2-base", num_labels=num_classes
)
# Load the state dictionary
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
logger.info(
f"Audio model loaded successfully with {num_classes} classes!"
)
return model, device
else:
# This is a full model object
model = checkpoint
model.to(device)
model.eval()
logger.info("Audio model loaded successfully!")
return model, device
except Exception as e:
logger.error(f"Failed to load audio model: {e}")
raise
def update_model_links(self, vision_url: str = None, audio_url: str = None):
"""Update Google Drive URLs for models (optional override)"""
if vision_url:
self.model_links["vision"]["url"] = vision_url
if audio_url:
self.model_links["audio"]["url"] = audio_url
# Update environment variables if provided
if vision_url:
os.environ["VISION_MODEL_DRIVE_ID"] = vision_url
if audio_url:
os.environ["AUDIO_MODEL_DRIVE_ID"] = audio_url
logger.info("Model links updated!")
def list_cached_models(self) -> list:
"""List all cached models"""
cached_models = []
for file_path in self.model_dir.glob("*.pth"):
cached_models.append(file_path.name)
return cached_models
def clear_cache(self):
"""Clear all cached models"""
for file_path in self.model_dir.glob("*.pth"):
file_path.unlink()
logger.info("Cache cleared!")
def get_model_status(self) -> dict:
"""Get status of all models"""
status = {}
for model_type, info in self.model_links.items():
status[model_type] = {
"configured": bool(info["url"]),
"filename": info["filename"],
"cached": (self.model_dir / info["filename"]).exists(),
"url": info["url"] if info["url"] else "Not configured",
}
return status
# Example usage
if __name__ == "__main__":
# Initialize manager
manager = SimpleModelManager()
# Check model status
status = manager.get_model_status()
print("Model Status:")
for model_type, info in status.items():
print(f" {model_type}: {'βœ…' if info['configured'] else '❌'} {info['url']}")
if info["cached"]:
print(f" πŸ“ Cached: {info['filename']}")
# Load models if configured
try:
if status["vision"]["configured"]:
vision_model, device, num_classes = manager.load_vision_model()
print(f"βœ… Vision model loaded: {num_classes} classes")
else:
print("❌ Vision model not configured")
if status["audio"]["configured"]:
audio_model, device = manager.load_audio_model()
print("βœ… Audio model loaded")
else:
print("❌ Audio model not configured")
if status["vision"]["configured"] and status["audio"]["configured"]:
print("\nπŸŽ‰ All models loaded successfully!")
else:
print("\n⚠️ Some models are not configured")
print("Please set the following environment variables:")
print(" VISION_MODEL_DRIVE_ID")
print(" AUDIO_MODEL_DRIVE_ID")
except Exception as e:
print(f"Error loading models: {e}")
print("\nFor folder structures:")
print(" 1. Navigate to each subfolder (Audio/Vision)")
print(" 2. Right-click on each .pth file")
print(" 3. Share -> Copy link")
print(" 4. Use those direct file links instead of folder links")
print("\nNote: Downloaded files are used directly as PyTorch models.")
print("\nOr set environment variables in your .env file:")
print(" VISION_MODEL_DRIVE_ID=your_vision_model_file_id")
print(" AUDIO_MODEL_DRIVE_ID=your_audio_model_file_id")