File size: 10,167 Bytes
c05d727 6e700f4 c05d727 c00bf6a c05d727 4b5873a c05d727 4b5873a c05d727 4b5873a c05d727 4b5873a c05d727 4b5873a c05d727 4c1b1bb c05d727 55ee111 6e700f4 55ee111 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 4c1b1bb 6e700f4 55ee111 4c1b1bb 55ee111 6e700f4 55ee111 6e700f4 55ee111 6e700f4 55ee111 6e700f4 c05d727 4b5873a c05d727 4c1b1bb c05d727 41bcb59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import cv2
import requests
import os
from collections import deque
from ultralytics import YOLO
file_urls = [
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/riped_tomato_93.jpeg?download=true',
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/unriped_tomato_18.jpeg?download=true',
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/tomatoes.mp4?download=true',
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
if 'mp4' in file_urls[i]:
download_file(
file_urls[i],
f"video.mp4"
)
else:
download_file(
file_urls[i],
f"image_{i}.jpg"
)
model = YOLO('best.pt')
path = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
# Print the detected objects' information (class, coordinates, and probability)
box = results[0].boxes
names = model.model.names
boxes = results.boxes
for box, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
x1, y1, x2, y2 = map(int, box)
class_name = names[int(cls)]
print(class_name, "class_name", class_name.lower() == 'ripe')
if class_name.lower() == 'ripe':
color = (0, 0, 255) # Red for ripe
else:
color = (0, 255, 0) # Green for unripe
# Draw rectangle around object
cv2.rectangle(
image,
(x1, y1),
(x2, y2),
color=color,
thickness=2,
lineType=cv2.LINE_AA
)
# Display class label on top of rectangle
label = f"{class_name.capitalize()}: {conf:.2f}"
cv2.putText(image, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, # Use the same color as the rectangle
2,
cv2.LINE_AA)
# Convert image to RGB (Gradio expects RGB format)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Ripe And Unripe Tomatoes Detection",
examples=path,
cache_examples=False,
)
def show_preds_video_batch_centered(video_path, batch_size=16, iou_threshold=0.5):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
names = model.model.names # cache class names
# For IoU-based tracking of unique tomatoes
unique_objects = {} # id -> (class_name, last_box)
next_id = 0
total_ripe, total_unripe = 0, 0
frame_buffer = deque()
def compute_iou(box1, box2):
xA = max(box1[0], box2[0])
yA = max(box1[1], box2[1])
xB = min(box1[2], box2[2])
yB = min(box1[3], box2[3])
inter_area = max(0, xB - xA) * max(0, yB - yA)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union_area = box1_area + box2_area - inter_area
return inter_area / union_area if union_area > 0 else 0
def match_or_register_object(cls_name, box):
nonlocal next_id, total_ripe, total_unripe
# Try to match existing object by IoU
for obj_id, (existing_cls, existing_box) in unique_objects.items():
if compute_iou(existing_box, box) > iou_threshold:
unique_objects[obj_id] = (cls_name, box)
return obj_id
# Register as new object
unique_objects[next_id] = (cls_name, box)
if cls_name.lower() == "ripe":
total_ripe += 1
else:
total_unripe += 1
next_id += 1
return next_id - 1
def process_batch(frames, results):
for frame, output in zip(frames, results):
current_ripe, current_unripe = set(), set()
if output.boxes:
boxes = output.boxes
cls_ids = boxes.cls.cpu().numpy().astype(int)
for box, cls_id in zip(boxes.xyxy, cls_ids):
x1, y1, x2, y2 = map(int, box)
class_name = names[cls_id]
obj_id = match_or_register_object(class_name, (x1, y1, x2, y2))
if class_name.lower() == "ripe":
current_ripe.add(obj_id)
color = (0, 0, 255)
else:
current_unripe.add(obj_id)
color = (0, 255, 0)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, f"{class_name.capitalize()} ID:{obj_id}",
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# --- Centered current counts ---
current_text = f"Current β Ripe: {len(current_ripe)} | Unripe: {len(current_unripe)}"
(text_w, _), _ = cv2.getTextSize(current_text, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
text_x = (frame_width - text_w) // 2
cv2.putText(frame, current_text, (text_x, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# --- Centered total counts ---
total_text = f"Total Seen β Ripe: {total_ripe} | Unripe: {total_unripe}"
(text_w, _), _ = cv2.getTextSize(total_text, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
text_x = (frame_width - text_w) // 2
cv2.putText(frame, total_text, (text_x, 80),
cv2.FONT_HERSHEY_SIMPLEX, 1, (200, 200, 0), 2)
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# --- Read and process in batches ---
while True:
ret, frame = cap.read()
if not ret:
break
frame_buffer.append(frame)
if len(frame_buffer) == batch_size:
results = model.track(source=list(frame_buffer), persist=True, tracker="bytetrack.yaml", verbose=False)
yield from process_batch(frame_buffer, results)
frame_buffer.clear()
if frame_buffer:
results = model.track(source=list(frame_buffer), persist=True, tracker="bytetrack.yaml", verbose=False)
yield from process_batch(frame_buffer, results)
cap.release()
print(f"Final Totals β Ripe: {total_ripe}, Unripe: {total_unripe}")
# def show_preds_video(video_path):
# results = model.track(source=video_path, persist=True, tracker="bytetrack.yaml", verbose=False, stream=True)
# ripe_ids = set()
# unripe_ids = set()
# # Get video frame dimensions for centering text
# cap = cv2.VideoCapture(video_path)
# if not cap.isOpened():
# print("Error: Could not open video.")
# return
# frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# cap.release()
# for output in results:
# frame = output.orig_img
# if output.boxes and output.boxes.id is not None:
# names = model.model.names
# boxes = output.boxes
# ids = boxes.id.cpu().numpy().astype(int)
# classes = boxes.cls.cpu().numpy().astype(int)
# for box, cls, track_id in zip(boxes.xyxy, classes, ids):
# x1, y1, x2, y2 = map(int, box)
# class_name = names[cls]
# # Define BGR colors directly for OpenCV functions
# if class_name.lower() == "ripe":
# # To get RED in Gradio (RGB), you need to use (255, 0, 0) BGR
# # Note: You were using (0, 0, 255) which is Blue in RGB after conversion.
# color = (0, 0, 255)
# ripe_ids.add(track_id)
# else:
# # To get GREEN in Gradio (RGB), you need to use (0, 255, 0) BGR.
# # This color is already correct.
# color = (0, 255, 0)
# unripe_ids.add(track_id)
# cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
# cv2.putText(frame, f"{class_name.capitalize()} ID:{track_id}",
# (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# ripe_count_text = f"Ripe: {len(ripe_ids)}"
# unripe_count_text = f"Unripe: {len(unripe_ids)}"
# full_text = f"{ripe_count_text} | {unripe_count_text}"
# # Get text size to center it
# (text_width, text_height), baseline = cv2.getTextSize(full_text, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
# text_x = (frame_width - text_width) // 2
# text_y = 40 # A fixed position at the top
# # Display the counts at the top center
# cv2.putText(frame, full_text, (text_x, text_y),
# cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# # This line is crucial for the fix.
# # It correctly converts the frame from BGR to RGB for Gradio.
# yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# print(f"Final Counts β Ripe: {len(ripe_ids)}, Unripe: {len(unripe_ids)}")
inputs_video = [
gr.components.Video(label="Input Video"),
]
outputs_video = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_video = gr.Interface(
fn=show_preds_video_batch_centered,
inputs=inputs_video,
outputs=outputs_video,
title="Ripe And Unripe Tomatoes Detection",
examples=video_path,
cache_examples=False,
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image inference', 'Video inference']
).queue().launch(share=True) |