Spaces:
Runtime error
Runtime error
| """ | |
| brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
| author: lzhbrian (https://lzhbrian.me) | |
| link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5 | |
| date: 2020.1.5 | |
| note: code is heavily borrowed from | |
| https://github.com/NVlabs/ffhq-dataset | |
| http://dlib.net/face_landmark_detection.py.html | |
| requirements: | |
| conda install Pillow numpy scipy | |
| conda install -c conda-forge dlib | |
| # download face landmark model from: | |
| # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
| """ | |
| import cv2 | |
| import dlib | |
| import glob | |
| import numpy as np | |
| import os | |
| import PIL | |
| import PIL.Image | |
| import scipy | |
| import scipy.ndimage | |
| import sys | |
| import argparse | |
| # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
| predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat') | |
| def get_landmark(filepath, only_keep_largest=True): | |
| """get landmark with dlib | |
| :return: np.array shape=(68, 2) | |
| """ | |
| detector = dlib.get_frontal_face_detector() | |
| img = dlib.load_rgb_image(filepath) | |
| dets = detector(img, 1) | |
| # Shangchen modified | |
| print("Number of faces detected: {}".format(len(dets))) | |
| if only_keep_largest: | |
| print('Detect several faces and only keep the largest.') | |
| face_areas = [] | |
| for k, d in enumerate(dets): | |
| face_area = (d.right() - d.left()) * (d.bottom() - d.top()) | |
| face_areas.append(face_area) | |
| largest_idx = face_areas.index(max(face_areas)) | |
| d = dets[largest_idx] | |
| shape = predictor(img, d) | |
| print("Part 0: {}, Part 1: {} ...".format( | |
| shape.part(0), shape.part(1))) | |
| else: | |
| for k, d in enumerate(dets): | |
| print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( | |
| k, d.left(), d.top(), d.right(), d.bottom())) | |
| # Get the landmarks/parts for the face in box d. | |
| shape = predictor(img, d) | |
| print("Part 0: {}, Part 1: {} ...".format( | |
| shape.part(0), shape.part(1))) | |
| t = list(shape.parts()) | |
| a = [] | |
| for tt in t: | |
| a.append([tt.x, tt.y]) | |
| lm = np.array(a) | |
| # lm is a shape=(68,2) np.array | |
| return lm | |
| def align_face(filepath, out_path): | |
| """ | |
| :param filepath: str | |
| :return: PIL Image | |
| """ | |
| try: | |
| lm = get_landmark(filepath) | |
| except: | |
| print('No landmark ...') | |
| return | |
| lm_chin = lm[0:17] # left-right | |
| lm_eyebrow_left = lm[17:22] # left-right | |
| lm_eyebrow_right = lm[22:27] # left-right | |
| lm_nose = lm[27:31] # top-down | |
| lm_nostrils = lm[31:36] # top-down | |
| lm_eye_left = lm[36:42] # left-clockwise | |
| lm_eye_right = lm[42:48] # left-clockwise | |
| lm_mouth_outer = lm[48:60] # left-clockwise | |
| lm_mouth_inner = lm[60:68] # left-clockwise | |
| # Calculate auxiliary vectors. | |
| eye_left = np.mean(lm_eye_left, axis=0) | |
| eye_right = np.mean(lm_eye_right, axis=0) | |
| eye_avg = (eye_left + eye_right) * 0.5 | |
| eye_to_eye = eye_right - eye_left | |
| mouth_left = lm_mouth_outer[0] | |
| mouth_right = lm_mouth_outer[6] | |
| mouth_avg = (mouth_left + mouth_right) * 0.5 | |
| eye_to_mouth = mouth_avg - eye_avg | |
| # Choose oriented crop rectangle. | |
| x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
| x /= np.hypot(*x) | |
| x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
| y = np.flipud(x) * [-1, 1] | |
| c = eye_avg + eye_to_mouth * 0.1 | |
| quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
| qsize = np.hypot(*x) * 2 | |
| # read image | |
| img = PIL.Image.open(filepath) | |
| output_size = 512 | |
| transform_size = 4096 | |
| enable_padding = False | |
| # Shrink. | |
| shrink = int(np.floor(qsize / output_size * 0.5)) | |
| if shrink > 1: | |
| rsize = (int(np.rint(float(img.size[0]) / shrink)), | |
| int(np.rint(float(img.size[1]) / shrink))) | |
| img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
| quad /= shrink | |
| qsize /= shrink | |
| # Crop. | |
| border = max(int(np.rint(qsize * 0.1)), 3) | |
| crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), | |
| int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) | |
| crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), | |
| min(crop[2] + border, | |
| img.size[0]), min(crop[3] + border, img.size[1])) | |
| if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
| img = img.crop(crop) | |
| quad -= crop[0:2] | |
| # Pad. | |
| pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), | |
| int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) | |
| pad = (max(-pad[0] + border, | |
| 0), max(-pad[1] + border, | |
| 0), max(pad[2] - img.size[0] + border, | |
| 0), max(pad[3] - img.size[1] + border, 0)) | |
| if enable_padding and max(pad) > border - 4: | |
| pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
| img = np.pad( | |
| np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), | |
| 'reflect') | |
| h, w, _ = img.shape | |
| y, x, _ = np.ogrid[:h, :w, :1] | |
| mask = np.maximum( | |
| 1.0 - | |
| np.minimum(np.float32(x) / pad[0], | |
| np.float32(w - 1 - x) / pad[2]), 1.0 - | |
| np.minimum(np.float32(y) / pad[1], | |
| np.float32(h - 1 - y) / pad[3])) | |
| blur = qsize * 0.02 | |
| img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - | |
| img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
| img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
| img = PIL.Image.fromarray( | |
| np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
| quad += pad[:2] | |
| img = img.transform((transform_size, transform_size), PIL.Image.QUAD, | |
| (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
| if output_size < transform_size: | |
| img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
| # Save aligned image. | |
| print('saveing: ', out_path) | |
| img.save(out_path) | |
| return img, np.max(quad[:, 0]) - np.min(quad[:, 0]) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--in_dir', type=str, default='./inputs/whole_imgs') | |
| parser.add_argument('--out_dir', type=str, default='./inputs/cropped_faces') | |
| args = parser.parse_args() | |
| img_list = sorted(glob.glob(f'{args.in_dir}/*.png')) | |
| img_list = sorted(img_list) | |
| for in_path in img_list: | |
| out_path = os.path.join(args.out_dir, in_path.split("/")[-1]) | |
| out_path = out_path.replace('.jpg', '.png') | |
| size_ = align_face(in_path, out_path) |