Spaces:
Runtime error
Runtime error
add realesrgan.
Browse files- README.md +8 -2
- basicsr/archs/arch_util.py +318 -0
- basicsr/archs/rrdbnet_arch.py +119 -0
- basicsr/utils/realesrgan_utils.py +293 -0
- inference_codeformer.py +34 -2
README.md
CHANGED
|
@@ -14,15 +14,19 @@ S-Lab, Nanyang Technological University
|
|
| 14 |
|
| 15 |
<img src="assets/network.jpg" width="800px"/>
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
### Updates
|
| 18 |
|
| 19 |
-
- **2022.07
|
|
|
|
| 20 |
- **2022.07.17**: The Colab demo of CodeFormer is available now. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|
| 21 |
- **2022.07.16**: Test code for face restoration is released. :blush:
|
| 22 |
- **2022.06.21**: This repo is created.
|
| 23 |
|
| 24 |
|
| 25 |
-
|
| 26 |
#### Face Restoration
|
| 27 |
|
| 28 |
<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
|
|
@@ -83,6 +87,8 @@ You can put the testing images in the `inputs/TestWhole` folder. If you would li
|
|
| 83 |
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
|
| 84 |
|
| 85 |
# For the whole images
|
|
|
|
|
|
|
| 86 |
python inference_codeformer.py --w 0.7 --test_path [input folder]
|
| 87 |
```
|
| 88 |
|
|
|
|
| 14 |
|
| 15 |
<img src="assets/network.jpg" width="800px"/>
|
| 16 |
|
| 17 |
+
 
|
| 18 |
+
[](https://github.com/sczhou/CodeFormer)
|
| 19 |
+
Please help to star this repo if CodeFormer is helpful to your pothos or projects. Thanks! :hugs:
|
| 20 |
+
|
| 21 |
### Updates
|
| 22 |
|
| 23 |
+
- **2022.08.07**: Integrate Real-ESRGAN to support background image enhancement.
|
| 24 |
+
- **2022.07.29**: New face detector with supporting `['YOLOv5', 'RetinaFace']`.
|
| 25 |
- **2022.07.17**: The Colab demo of CodeFormer is available now. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|
| 26 |
- **2022.07.16**: Test code for face restoration is released. :blush:
|
| 27 |
- **2022.06.21**: This repo is created.
|
| 28 |
|
| 29 |
|
|
|
|
| 30 |
#### Face Restoration
|
| 31 |
|
| 32 |
<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
|
|
|
|
| 87 |
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
|
| 88 |
|
| 89 |
# For the whole images
|
| 90 |
+
# If you want to enhance the background regions with Real-ESRGAN,
|
| 91 |
+
# you can add '--bg_upsampler realesrgan' in the following command
|
| 92 |
python inference_codeformer.py --w 0.7 --test_path [input folder]
|
| 93 |
```
|
| 94 |
|
basicsr/archs/arch_util.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import collections.abc
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision
|
| 5 |
+
import warnings
|
| 6 |
+
from distutils.version import LooseVersion
|
| 7 |
+
from itertools import repeat
|
| 8 |
+
from torch import nn as nn
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
from torch.nn import init as init
|
| 11 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
| 12 |
+
|
| 13 |
+
from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
|
| 14 |
+
from basicsr.utils import get_root_logger
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@torch.no_grad()
|
| 18 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
| 19 |
+
"""Initialize network weights.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
| 23 |
+
scale (float): Scale initialized weights, especially for residual
|
| 24 |
+
blocks. Default: 1.
|
| 25 |
+
bias_fill (float): The value to fill bias. Default: 0
|
| 26 |
+
kwargs (dict): Other arguments for initialization function.
|
| 27 |
+
"""
|
| 28 |
+
if not isinstance(module_list, list):
|
| 29 |
+
module_list = [module_list]
|
| 30 |
+
for module in module_list:
|
| 31 |
+
for m in module.modules():
|
| 32 |
+
if isinstance(m, nn.Conv2d):
|
| 33 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
| 34 |
+
m.weight.data *= scale
|
| 35 |
+
if m.bias is not None:
|
| 36 |
+
m.bias.data.fill_(bias_fill)
|
| 37 |
+
elif isinstance(m, nn.Linear):
|
| 38 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
| 39 |
+
m.weight.data *= scale
|
| 40 |
+
if m.bias is not None:
|
| 41 |
+
m.bias.data.fill_(bias_fill)
|
| 42 |
+
elif isinstance(m, _BatchNorm):
|
| 43 |
+
init.constant_(m.weight, 1)
|
| 44 |
+
if m.bias is not None:
|
| 45 |
+
m.bias.data.fill_(bias_fill)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
| 49 |
+
"""Make layers by stacking the same blocks.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
basic_block (nn.module): nn.module class for basic block.
|
| 53 |
+
num_basic_block (int): number of blocks.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
| 57 |
+
"""
|
| 58 |
+
layers = []
|
| 59 |
+
for _ in range(num_basic_block):
|
| 60 |
+
layers.append(basic_block(**kwarg))
|
| 61 |
+
return nn.Sequential(*layers)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class ResidualBlockNoBN(nn.Module):
|
| 65 |
+
"""Residual block without BN.
|
| 66 |
+
|
| 67 |
+
It has a style of:
|
| 68 |
+
---Conv-ReLU-Conv-+-
|
| 69 |
+
|________________|
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
num_feat (int): Channel number of intermediate features.
|
| 73 |
+
Default: 64.
|
| 74 |
+
res_scale (float): Residual scale. Default: 1.
|
| 75 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
| 76 |
+
otherwise, use default_init_weights. Default: False.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
| 80 |
+
super(ResidualBlockNoBN, self).__init__()
|
| 81 |
+
self.res_scale = res_scale
|
| 82 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
| 83 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
| 84 |
+
self.relu = nn.ReLU(inplace=True)
|
| 85 |
+
|
| 86 |
+
if not pytorch_init:
|
| 87 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
identity = x
|
| 91 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
| 92 |
+
return identity + out * self.res_scale
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class Upsample(nn.Sequential):
|
| 96 |
+
"""Upsample module.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 100 |
+
num_feat (int): Channel number of intermediate features.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(self, scale, num_feat):
|
| 104 |
+
m = []
|
| 105 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 106 |
+
for _ in range(int(math.log(scale, 2))):
|
| 107 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 108 |
+
m.append(nn.PixelShuffle(2))
|
| 109 |
+
elif scale == 3:
|
| 110 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 111 |
+
m.append(nn.PixelShuffle(3))
|
| 112 |
+
else:
|
| 113 |
+
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
| 114 |
+
super(Upsample, self).__init__(*m)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
| 118 |
+
"""Warp an image or feature map with optical flow.
|
| 119 |
+
|
| 120 |
+
Args:
|
| 121 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
| 122 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
| 123 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
| 124 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
| 125 |
+
Default: 'zeros'.
|
| 126 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
| 127 |
+
align_corners=True. After pytorch 1.3, the default value is
|
| 128 |
+
align_corners=False. Here, we use the True as default.
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
Tensor: Warped image or feature map.
|
| 132 |
+
"""
|
| 133 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
| 134 |
+
_, _, h, w = x.size()
|
| 135 |
+
# create mesh grid
|
| 136 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
| 137 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
| 138 |
+
grid.requires_grad = False
|
| 139 |
+
|
| 140 |
+
vgrid = grid + flow
|
| 141 |
+
# scale grid to [-1,1]
|
| 142 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
| 143 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
| 144 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
| 145 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
| 146 |
+
|
| 147 |
+
# TODO, what if align_corners=False
|
| 148 |
+
return output
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
| 152 |
+
"""Resize a flow according to ratio or shape.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
| 156 |
+
size_type (str): 'ratio' or 'shape'.
|
| 157 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
| 158 |
+
shape.
|
| 159 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
| 160 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
| 161 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
| 162 |
+
ratio > 1.0).
|
| 163 |
+
2) The order of output_size should be [out_h, out_w].
|
| 164 |
+
interp_mode (str): The mode of interpolation for resizing.
|
| 165 |
+
Default: 'bilinear'.
|
| 166 |
+
align_corners (bool): Whether align corners. Default: False.
|
| 167 |
+
|
| 168 |
+
Returns:
|
| 169 |
+
Tensor: Resized flow.
|
| 170 |
+
"""
|
| 171 |
+
_, _, flow_h, flow_w = flow.size()
|
| 172 |
+
if size_type == 'ratio':
|
| 173 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
| 174 |
+
elif size_type == 'shape':
|
| 175 |
+
output_h, output_w = sizes[0], sizes[1]
|
| 176 |
+
else:
|
| 177 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
| 178 |
+
|
| 179 |
+
input_flow = flow.clone()
|
| 180 |
+
ratio_h = output_h / flow_h
|
| 181 |
+
ratio_w = output_w / flow_w
|
| 182 |
+
input_flow[:, 0, :, :] *= ratio_w
|
| 183 |
+
input_flow[:, 1, :, :] *= ratio_h
|
| 184 |
+
resized_flow = F.interpolate(
|
| 185 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
| 186 |
+
return resized_flow
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# TODO: may write a cpp file
|
| 190 |
+
def pixel_unshuffle(x, scale):
|
| 191 |
+
""" Pixel unshuffle.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
| 195 |
+
scale (int): Downsample ratio.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Tensor: the pixel unshuffled feature.
|
| 199 |
+
"""
|
| 200 |
+
b, c, hh, hw = x.size()
|
| 201 |
+
out_channel = c * (scale**2)
|
| 202 |
+
assert hh % scale == 0 and hw % scale == 0
|
| 203 |
+
h = hh // scale
|
| 204 |
+
w = hw // scale
|
| 205 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
| 206 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class DCNv2Pack(ModulatedDeformConvPack):
|
| 210 |
+
"""Modulated deformable conv for deformable alignment.
|
| 211 |
+
|
| 212 |
+
Different from the official DCNv2Pack, which generates offsets and masks
|
| 213 |
+
from the preceding features, this DCNv2Pack takes another different
|
| 214 |
+
features to generate offsets and masks.
|
| 215 |
+
|
| 216 |
+
Ref:
|
| 217 |
+
Delving Deep into Deformable Alignment in Video Super-Resolution.
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
def forward(self, x, feat):
|
| 221 |
+
out = self.conv_offset(feat)
|
| 222 |
+
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
| 223 |
+
offset = torch.cat((o1, o2), dim=1)
|
| 224 |
+
mask = torch.sigmoid(mask)
|
| 225 |
+
|
| 226 |
+
offset_absmean = torch.mean(torch.abs(offset))
|
| 227 |
+
if offset_absmean > 50:
|
| 228 |
+
logger = get_root_logger()
|
| 229 |
+
logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
|
| 230 |
+
|
| 231 |
+
if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
|
| 232 |
+
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
| 233 |
+
self.dilation, mask)
|
| 234 |
+
else:
|
| 235 |
+
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
|
| 236 |
+
self.dilation, self.groups, self.deformable_groups)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
| 240 |
+
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
| 241 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 242 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 243 |
+
def norm_cdf(x):
|
| 244 |
+
# Computes standard normal cumulative distribution function
|
| 245 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 246 |
+
|
| 247 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 248 |
+
warnings.warn(
|
| 249 |
+
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
| 250 |
+
'The distribution of values may be incorrect.',
|
| 251 |
+
stacklevel=2)
|
| 252 |
+
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
# Values are generated by using a truncated uniform distribution and
|
| 255 |
+
# then using the inverse CDF for the normal distribution.
|
| 256 |
+
# Get upper and lower cdf values
|
| 257 |
+
low = norm_cdf((a - mean) / std)
|
| 258 |
+
up = norm_cdf((b - mean) / std)
|
| 259 |
+
|
| 260 |
+
# Uniformly fill tensor with values from [low, up], then translate to
|
| 261 |
+
# [2l-1, 2u-1].
|
| 262 |
+
tensor.uniform_(2 * low - 1, 2 * up - 1)
|
| 263 |
+
|
| 264 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 265 |
+
# standard normal
|
| 266 |
+
tensor.erfinv_()
|
| 267 |
+
|
| 268 |
+
# Transform to proper mean, std
|
| 269 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 270 |
+
tensor.add_(mean)
|
| 271 |
+
|
| 272 |
+
# Clamp to ensure it's in the proper range
|
| 273 |
+
tensor.clamp_(min=a, max=b)
|
| 274 |
+
return tensor
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 278 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 279 |
+
normal distribution.
|
| 280 |
+
|
| 281 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
| 282 |
+
|
| 283 |
+
The values are effectively drawn from the
|
| 284 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 285 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 286 |
+
the bounds. The method used for generating the random values works
|
| 287 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 291 |
+
mean: the mean of the normal distribution
|
| 292 |
+
std: the standard deviation of the normal distribution
|
| 293 |
+
a: the minimum cutoff value
|
| 294 |
+
b: the maximum cutoff value
|
| 295 |
+
|
| 296 |
+
Examples:
|
| 297 |
+
>>> w = torch.empty(3, 5)
|
| 298 |
+
>>> nn.init.trunc_normal_(w)
|
| 299 |
+
"""
|
| 300 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
# From PyTorch
|
| 304 |
+
def _ntuple(n):
|
| 305 |
+
|
| 306 |
+
def parse(x):
|
| 307 |
+
if isinstance(x, collections.abc.Iterable):
|
| 308 |
+
return x
|
| 309 |
+
return tuple(repeat(x, n))
|
| 310 |
+
|
| 311 |
+
return parse
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
to_1tuple = _ntuple(1)
|
| 315 |
+
to_2tuple = _ntuple(2)
|
| 316 |
+
to_3tuple = _ntuple(3)
|
| 317 |
+
to_4tuple = _ntuple(4)
|
| 318 |
+
to_ntuple = _ntuple
|
basicsr/archs/rrdbnet_arch.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn as nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
|
| 5 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 6 |
+
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResidualDenseBlock(nn.Module):
|
| 10 |
+
"""Residual Dense Block.
|
| 11 |
+
|
| 12 |
+
Used in RRDB block in ESRGAN.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
num_feat (int): Channel number of intermediate features.
|
| 16 |
+
num_grow_ch (int): Channels for each growth.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
| 20 |
+
super(ResidualDenseBlock, self).__init__()
|
| 21 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
| 22 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
| 23 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
| 24 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
| 25 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
| 26 |
+
|
| 27 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 28 |
+
|
| 29 |
+
# initialization
|
| 30 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
x1 = self.lrelu(self.conv1(x))
|
| 34 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
| 35 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
| 36 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
| 37 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
| 38 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
| 39 |
+
return x5 * 0.2 + x
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class RRDB(nn.Module):
|
| 43 |
+
"""Residual in Residual Dense Block.
|
| 44 |
+
|
| 45 |
+
Used in RRDB-Net in ESRGAN.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
num_feat (int): Channel number of intermediate features.
|
| 49 |
+
num_grow_ch (int): Channels for each growth.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
| 53 |
+
super(RRDB, self).__init__()
|
| 54 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
| 55 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
| 56 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
| 57 |
+
|
| 58 |
+
def forward(self, x):
|
| 59 |
+
out = self.rdb1(x)
|
| 60 |
+
out = self.rdb2(out)
|
| 61 |
+
out = self.rdb3(out)
|
| 62 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
| 63 |
+
return out * 0.2 + x
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@ARCH_REGISTRY.register()
|
| 67 |
+
class RRDBNet(nn.Module):
|
| 68 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
| 69 |
+
in ESRGAN.
|
| 70 |
+
|
| 71 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
| 72 |
+
|
| 73 |
+
We extend ESRGAN for scale x2 and scale x1.
|
| 74 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
| 75 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
| 76 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
num_in_ch (int): Channel number of inputs.
|
| 80 |
+
num_out_ch (int): Channel number of outputs.
|
| 81 |
+
num_feat (int): Channel number of intermediate features.
|
| 82 |
+
Default: 64
|
| 83 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
| 84 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
| 88 |
+
super(RRDBNet, self).__init__()
|
| 89 |
+
self.scale = scale
|
| 90 |
+
if scale == 2:
|
| 91 |
+
num_in_ch = num_in_ch * 4
|
| 92 |
+
elif scale == 1:
|
| 93 |
+
num_in_ch = num_in_ch * 16
|
| 94 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
| 95 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
| 96 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 97 |
+
# upsample
|
| 98 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 99 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 100 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 101 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 102 |
+
|
| 103 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
if self.scale == 2:
|
| 107 |
+
feat = pixel_unshuffle(x, scale=2)
|
| 108 |
+
elif self.scale == 1:
|
| 109 |
+
feat = pixel_unshuffle(x, scale=4)
|
| 110 |
+
else:
|
| 111 |
+
feat = x
|
| 112 |
+
feat = self.conv_first(feat)
|
| 113 |
+
body_feat = self.conv_body(self.body(feat))
|
| 114 |
+
feat = feat + body_feat
|
| 115 |
+
# upsample
|
| 116 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
| 117 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
| 118 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
| 119 |
+
return out
|
basicsr/utils/realesrgan_utils.py
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import queue
|
| 6 |
+
import threading
|
| 7 |
+
import torch
|
| 8 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
# ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class RealESRGANer():
|
| 15 |
+
"""A helper class for upsampling images with RealESRGAN.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
| 19 |
+
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
| 20 |
+
model (nn.Module): The defined network. Default: None.
|
| 21 |
+
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
| 22 |
+
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
| 23 |
+
0 denotes for do not use tile. Default: 0.
|
| 24 |
+
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
| 25 |
+
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
| 26 |
+
half (float): Whether to use half precision during inference. Default: False.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self,
|
| 30 |
+
scale,
|
| 31 |
+
model_path,
|
| 32 |
+
model=None,
|
| 33 |
+
tile=0,
|
| 34 |
+
tile_pad=10,
|
| 35 |
+
pre_pad=10,
|
| 36 |
+
half=False,
|
| 37 |
+
device=None,
|
| 38 |
+
gpu_id=None):
|
| 39 |
+
self.scale = scale
|
| 40 |
+
self.tile_size = tile
|
| 41 |
+
self.tile_pad = tile_pad
|
| 42 |
+
self.pre_pad = pre_pad
|
| 43 |
+
self.mod_scale = None
|
| 44 |
+
self.half = half
|
| 45 |
+
|
| 46 |
+
# initialize model
|
| 47 |
+
if gpu_id:
|
| 48 |
+
self.device = torch.device(
|
| 49 |
+
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 50 |
+
else:
|
| 51 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 52 |
+
# if the model_path starts with https, it will first download models to the folder: realesrgan/weights
|
| 53 |
+
if model_path.startswith('https://'):
|
| 54 |
+
model_path = load_file_from_url(
|
| 55 |
+
url=model_path, model_dir=os.path.join('weights/realesrgan'), progress=True, file_name=None)
|
| 56 |
+
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
| 57 |
+
# prefer to use params_ema
|
| 58 |
+
if 'params_ema' in loadnet:
|
| 59 |
+
keyname = 'params_ema'
|
| 60 |
+
else:
|
| 61 |
+
keyname = 'params'
|
| 62 |
+
model.load_state_dict(loadnet[keyname], strict=True)
|
| 63 |
+
model.eval()
|
| 64 |
+
self.model = model.to(self.device)
|
| 65 |
+
if self.half:
|
| 66 |
+
self.model = self.model.half()
|
| 67 |
+
|
| 68 |
+
def pre_process(self, img):
|
| 69 |
+
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
| 70 |
+
"""
|
| 71 |
+
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
| 72 |
+
self.img = img.unsqueeze(0).to(self.device)
|
| 73 |
+
if self.half:
|
| 74 |
+
self.img = self.img.half()
|
| 75 |
+
|
| 76 |
+
# pre_pad
|
| 77 |
+
if self.pre_pad != 0:
|
| 78 |
+
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
| 79 |
+
# mod pad for divisible borders
|
| 80 |
+
if self.scale == 2:
|
| 81 |
+
self.mod_scale = 2
|
| 82 |
+
elif self.scale == 1:
|
| 83 |
+
self.mod_scale = 4
|
| 84 |
+
if self.mod_scale is not None:
|
| 85 |
+
self.mod_pad_h, self.mod_pad_w = 0, 0
|
| 86 |
+
_, _, h, w = self.img.size()
|
| 87 |
+
if (h % self.mod_scale != 0):
|
| 88 |
+
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
| 89 |
+
if (w % self.mod_scale != 0):
|
| 90 |
+
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
| 91 |
+
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
| 92 |
+
|
| 93 |
+
def process(self):
|
| 94 |
+
# model inference
|
| 95 |
+
self.output = self.model(self.img)
|
| 96 |
+
|
| 97 |
+
def tile_process(self):
|
| 98 |
+
"""It will first crop input images to tiles, and then process each tile.
|
| 99 |
+
Finally, all the processed tiles are merged into one images.
|
| 100 |
+
|
| 101 |
+
Modified from: https://github.com/ata4/esrgan-launcher
|
| 102 |
+
"""
|
| 103 |
+
batch, channel, height, width = self.img.shape
|
| 104 |
+
output_height = height * self.scale
|
| 105 |
+
output_width = width * self.scale
|
| 106 |
+
output_shape = (batch, channel, output_height, output_width)
|
| 107 |
+
|
| 108 |
+
# start with black image
|
| 109 |
+
self.output = self.img.new_zeros(output_shape)
|
| 110 |
+
tiles_x = math.ceil(width / self.tile_size)
|
| 111 |
+
tiles_y = math.ceil(height / self.tile_size)
|
| 112 |
+
|
| 113 |
+
# loop over all tiles
|
| 114 |
+
for y in range(tiles_y):
|
| 115 |
+
for x in range(tiles_x):
|
| 116 |
+
# extract tile from input image
|
| 117 |
+
ofs_x = x * self.tile_size
|
| 118 |
+
ofs_y = y * self.tile_size
|
| 119 |
+
# input tile area on total image
|
| 120 |
+
input_start_x = ofs_x
|
| 121 |
+
input_end_x = min(ofs_x + self.tile_size, width)
|
| 122 |
+
input_start_y = ofs_y
|
| 123 |
+
input_end_y = min(ofs_y + self.tile_size, height)
|
| 124 |
+
|
| 125 |
+
# input tile area on total image with padding
|
| 126 |
+
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
| 127 |
+
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
| 128 |
+
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
| 129 |
+
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
| 130 |
+
|
| 131 |
+
# input tile dimensions
|
| 132 |
+
input_tile_width = input_end_x - input_start_x
|
| 133 |
+
input_tile_height = input_end_y - input_start_y
|
| 134 |
+
tile_idx = y * tiles_x + x + 1
|
| 135 |
+
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
| 136 |
+
|
| 137 |
+
# upscale tile
|
| 138 |
+
try:
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
output_tile = self.model(input_tile)
|
| 141 |
+
except RuntimeError as error:
|
| 142 |
+
print('Error', error)
|
| 143 |
+
# print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
| 144 |
+
|
| 145 |
+
# output tile area on total image
|
| 146 |
+
output_start_x = input_start_x * self.scale
|
| 147 |
+
output_end_x = input_end_x * self.scale
|
| 148 |
+
output_start_y = input_start_y * self.scale
|
| 149 |
+
output_end_y = input_end_y * self.scale
|
| 150 |
+
|
| 151 |
+
# output tile area without padding
|
| 152 |
+
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
| 153 |
+
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
| 154 |
+
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
| 155 |
+
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
| 156 |
+
|
| 157 |
+
# put tile into output image
|
| 158 |
+
self.output[:, :, output_start_y:output_end_y,
|
| 159 |
+
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
| 160 |
+
output_start_x_tile:output_end_x_tile]
|
| 161 |
+
|
| 162 |
+
def post_process(self):
|
| 163 |
+
# remove extra pad
|
| 164 |
+
if self.mod_scale is not None:
|
| 165 |
+
_, _, h, w = self.output.size()
|
| 166 |
+
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
| 167 |
+
# remove prepad
|
| 168 |
+
if self.pre_pad != 0:
|
| 169 |
+
_, _, h, w = self.output.size()
|
| 170 |
+
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
| 171 |
+
return self.output
|
| 172 |
+
|
| 173 |
+
@torch.no_grad()
|
| 174 |
+
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
| 175 |
+
h_input, w_input = img.shape[0:2]
|
| 176 |
+
# img: numpy
|
| 177 |
+
img = img.astype(np.float32)
|
| 178 |
+
if np.max(img) > 256: # 16-bit image
|
| 179 |
+
max_range = 65535
|
| 180 |
+
print('\tInput is a 16-bit image')
|
| 181 |
+
else:
|
| 182 |
+
max_range = 255
|
| 183 |
+
img = img / max_range
|
| 184 |
+
if len(img.shape) == 2: # gray image
|
| 185 |
+
img_mode = 'L'
|
| 186 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
| 187 |
+
elif img.shape[2] == 4: # RGBA image with alpha channel
|
| 188 |
+
img_mode = 'RGBA'
|
| 189 |
+
alpha = img[:, :, 3]
|
| 190 |
+
img = img[:, :, 0:3]
|
| 191 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 192 |
+
if alpha_upsampler == 'realesrgan':
|
| 193 |
+
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
| 194 |
+
else:
|
| 195 |
+
img_mode = 'RGB'
|
| 196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 197 |
+
|
| 198 |
+
# ------------------- process image (without the alpha channel) ------------------- #
|
| 199 |
+
self.pre_process(img)
|
| 200 |
+
if self.tile_size > 0:
|
| 201 |
+
self.tile_process()
|
| 202 |
+
else:
|
| 203 |
+
self.process()
|
| 204 |
+
output_img = self.post_process()
|
| 205 |
+
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
| 206 |
+
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
| 207 |
+
if img_mode == 'L':
|
| 208 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
| 209 |
+
|
| 210 |
+
# ------------------- process the alpha channel if necessary ------------------- #
|
| 211 |
+
if img_mode == 'RGBA':
|
| 212 |
+
if alpha_upsampler == 'realesrgan':
|
| 213 |
+
self.pre_process(alpha)
|
| 214 |
+
if self.tile_size > 0:
|
| 215 |
+
self.tile_process()
|
| 216 |
+
else:
|
| 217 |
+
self.process()
|
| 218 |
+
output_alpha = self.post_process()
|
| 219 |
+
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
| 220 |
+
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
| 221 |
+
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
| 222 |
+
else: # use the cv2 resize for alpha channel
|
| 223 |
+
h, w = alpha.shape[0:2]
|
| 224 |
+
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
| 225 |
+
|
| 226 |
+
# merge the alpha channel
|
| 227 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
| 228 |
+
output_img[:, :, 3] = output_alpha
|
| 229 |
+
|
| 230 |
+
# ------------------------------ return ------------------------------ #
|
| 231 |
+
if max_range == 65535: # 16-bit image
|
| 232 |
+
output = (output_img * 65535.0).round().astype(np.uint16)
|
| 233 |
+
else:
|
| 234 |
+
output = (output_img * 255.0).round().astype(np.uint8)
|
| 235 |
+
|
| 236 |
+
if outscale is not None and outscale != float(self.scale):
|
| 237 |
+
output = cv2.resize(
|
| 238 |
+
output, (
|
| 239 |
+
int(w_input * outscale),
|
| 240 |
+
int(h_input * outscale),
|
| 241 |
+
), interpolation=cv2.INTER_LANCZOS4)
|
| 242 |
+
|
| 243 |
+
return output, img_mode
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class PrefetchReader(threading.Thread):
|
| 247 |
+
"""Prefetch images.
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
img_list (list[str]): A image list of image paths to be read.
|
| 251 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
def __init__(self, img_list, num_prefetch_queue):
|
| 255 |
+
super().__init__()
|
| 256 |
+
self.que = queue.Queue(num_prefetch_queue)
|
| 257 |
+
self.img_list = img_list
|
| 258 |
+
|
| 259 |
+
def run(self):
|
| 260 |
+
for img_path in self.img_list:
|
| 261 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
| 262 |
+
self.que.put(img)
|
| 263 |
+
|
| 264 |
+
self.que.put(None)
|
| 265 |
+
|
| 266 |
+
def __next__(self):
|
| 267 |
+
next_item = self.que.get()
|
| 268 |
+
if next_item is None:
|
| 269 |
+
raise StopIteration
|
| 270 |
+
return next_item
|
| 271 |
+
|
| 272 |
+
def __iter__(self):
|
| 273 |
+
return self
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class IOConsumer(threading.Thread):
|
| 277 |
+
|
| 278 |
+
def __init__(self, opt, que, qid):
|
| 279 |
+
super().__init__()
|
| 280 |
+
self._queue = que
|
| 281 |
+
self.qid = qid
|
| 282 |
+
self.opt = opt
|
| 283 |
+
|
| 284 |
+
def run(self):
|
| 285 |
+
while True:
|
| 286 |
+
msg = self._queue.get()
|
| 287 |
+
if isinstance(msg, str) and msg == 'quit':
|
| 288 |
+
break
|
| 289 |
+
|
| 290 |
+
output = msg['output']
|
| 291 |
+
save_path = msg['save_path']
|
| 292 |
+
cv2.imwrite(save_path, output)
|
| 293 |
+
print(f'IO worker {self.qid} is done.')
|
inference_codeformer.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
import argparse
|
|
@@ -20,15 +21,41 @@ if __name__ == '__main__':
|
|
| 20 |
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces')
|
| 21 |
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
|
| 22 |
parser.add_argument('--draw_box', action='store_true')
|
|
|
|
|
|
|
| 23 |
|
| 24 |
args = parser.parse_args()
|
|
|
|
|
|
|
| 25 |
if args.test_path.endswith('/'): # solve when path ends with /
|
| 26 |
args.test_path = args.test_path[:-1]
|
| 27 |
|
| 28 |
w = args.w
|
| 29 |
result_root = f'results/{os.path.basename(args.test_path)}_{w}'
|
| 30 |
|
| 31 |
-
# set up
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
|
| 33 |
connect_list=['32', '64', '128', '256']).to(device)
|
| 34 |
|
|
@@ -98,7 +125,12 @@ if __name__ == '__main__':
|
|
| 98 |
|
| 99 |
# paste_back
|
| 100 |
if not args.has_aligned:
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
face_helper.get_inverse_affine(None)
|
| 103 |
# paste each restored face to the input image
|
| 104 |
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
|
|
|
|
| 1 |
+
# Modified by Shangchen Zhou from: https://github.com/TencentARC/GFPGAN/blob/master/inference_gfpgan.py
|
| 2 |
import os
|
| 3 |
import cv2
|
| 4 |
import argparse
|
|
|
|
| 21 |
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces')
|
| 22 |
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
|
| 23 |
parser.add_argument('--draw_box', action='store_true')
|
| 24 |
+
parser.add_argument('--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan')
|
| 25 |
+
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
|
| 26 |
|
| 27 |
args = parser.parse_args()
|
| 28 |
+
|
| 29 |
+
# ------------------------ input & output ------------------------
|
| 30 |
if args.test_path.endswith('/'): # solve when path ends with /
|
| 31 |
args.test_path = args.test_path[:-1]
|
| 32 |
|
| 33 |
w = args.w
|
| 34 |
result_root = f'results/{os.path.basename(args.test_path)}_{w}'
|
| 35 |
|
| 36 |
+
# ------------------ set up background upsampler ------------------
|
| 37 |
+
if args.bg_upsampler == 'realesrgan':
|
| 38 |
+
if not torch.cuda.is_available(): # CPU
|
| 39 |
+
import warnings
|
| 40 |
+
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
| 41 |
+
'If you really want to use it, please modify the corresponding codes.')
|
| 42 |
+
bg_upsampler = None
|
| 43 |
+
else:
|
| 44 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 45 |
+
from basicsr.utils.realesrgan_utils import RealESRGANer
|
| 46 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
| 47 |
+
bg_upsampler = RealESRGANer(
|
| 48 |
+
scale=2,
|
| 49 |
+
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
| 50 |
+
model=model,
|
| 51 |
+
tile=args.bg_tile,
|
| 52 |
+
tile_pad=10,
|
| 53 |
+
pre_pad=0,
|
| 54 |
+
half=True) # need to set False in CPU mode
|
| 55 |
+
else:
|
| 56 |
+
bg_upsampler = None
|
| 57 |
+
|
| 58 |
+
# ------------------ set up CodeFormer restorer -------------------
|
| 59 |
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
|
| 60 |
connect_list=['32', '64', '128', '256']).to(device)
|
| 61 |
|
|
|
|
| 125 |
|
| 126 |
# paste_back
|
| 127 |
if not args.has_aligned:
|
| 128 |
+
# upsample the background
|
| 129 |
+
if bg_upsampler is not None:
|
| 130 |
+
# Now only support RealESRGAN for upsampling background
|
| 131 |
+
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
|
| 132 |
+
else:
|
| 133 |
+
bg_img = None
|
| 134 |
face_helper.get_inverse_affine(None)
|
| 135 |
# paste each restored face to the input image
|
| 136 |
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
|