Spaces:
Runtime error
Runtime error
fix pytorch version check.
Browse files
README.md
CHANGED
|
@@ -136,7 +136,7 @@ If our work is useful for your research, please consider citing:
|
|
| 136 |
|
| 137 |
### License
|
| 138 |
|
| 139 |
-
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>. Redistribution and use
|
| 140 |
|
| 141 |
### Acknowledgement
|
| 142 |
|
|
|
|
| 136 |
|
| 137 |
### License
|
| 138 |
|
| 139 |
+
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">NTU S-Lab License 1.0</a>. Redistribution and use should follow this license.
|
| 140 |
|
| 141 |
### Acknowledgement
|
| 142 |
|
basicsr/archs/vqgan_arch.py
CHANGED
|
@@ -41,10 +41,10 @@ class VectorQuantizer(nn.Module):
|
|
| 41 |
|
| 42 |
mean_distance = torch.mean(d)
|
| 43 |
# find closest encodings
|
| 44 |
-
|
| 45 |
-
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
|
| 46 |
# [0-1], higher score, higher confidence
|
| 47 |
-
min_encoding_scores = torch.exp(-min_encoding_scores/10)
|
| 48 |
|
| 49 |
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
|
| 50 |
min_encodings.scatter_(1, min_encoding_indices, 1)
|
|
@@ -66,7 +66,6 @@ class VectorQuantizer(nn.Module):
|
|
| 66 |
"perplexity": perplexity,
|
| 67 |
"min_encodings": min_encodings,
|
| 68 |
"min_encoding_indices": min_encoding_indices,
|
| 69 |
-
"min_encoding_scores": min_encoding_scores,
|
| 70 |
"mean_distance": mean_distance
|
| 71 |
}
|
| 72 |
|
|
|
|
| 41 |
|
| 42 |
mean_distance = torch.mean(d)
|
| 43 |
# find closest encodings
|
| 44 |
+
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
| 45 |
+
# min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
|
| 46 |
# [0-1], higher score, higher confidence
|
| 47 |
+
# min_encoding_scores = torch.exp(-min_encoding_scores/10)
|
| 48 |
|
| 49 |
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
|
| 50 |
min_encodings.scatter_(1, min_encoding_indices, 1)
|
|
|
|
| 66 |
"perplexity": perplexity,
|
| 67 |
"min_encodings": min_encodings,
|
| 68 |
"min_encoding_indices": min_encoding_indices,
|
|
|
|
| 69 |
"mean_distance": mean_distance
|
| 70 |
}
|
| 71 |
|
facelib/detection/yolov5face/face_detector.py
CHANGED
|
@@ -17,7 +17,7 @@ from facelib.detection.yolov5face.utils.general import (
|
|
| 17 |
scale_coords_landmarks,
|
| 18 |
)
|
| 19 |
|
| 20 |
-
IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:
|
| 21 |
|
| 22 |
|
| 23 |
def isListempty(inList):
|
|
|
|
| 17 |
scale_coords_landmarks,
|
| 18 |
)
|
| 19 |
|
| 20 |
+
IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:2])) >= (1, 9, 0)
|
| 21 |
|
| 22 |
|
| 23 |
def isListempty(inList):
|