Spaces:
Runtime error
Runtime error
release training codes and config files.
Browse files- README.md +8 -6
- basicsr/archs/codeformer_arch.py +5 -1
- basicsr/data/data_util.py +87 -0
- basicsr/data/ffhq_blind_joint_dataset.py +327 -0
- basicsr/data/paired_image_dataset.py +101 -0
- basicsr/models/base_model.py +322 -0
- basicsr/models/codeformer_idx_model.py +216 -0
- basicsr/models/codeformer_joint_model.py +346 -0
- basicsr/models/codeformer_model.py +332 -0
- basicsr/models/sr_model.py +209 -0
- basicsr/models/vqgan_model.py +285 -0
- docs/history_changelog.md +1 -0
- docs/train.md +32 -0
- docs/train_CN.md +32 -0
- options/CodeFormer_colorization.yml +137 -0
- options/CodeFormer_inpainting.yml +151 -0
- options/CodeFormer_stage2.yml +137 -0
- options/CodeFormer_stage3.yml +164 -0
- options/VQGAN_512_ds32_nearest_stage1.yml +136 -0
- scripts/generate_latent_gt.py +67 -0
- scripts/inference_vqgan.py +59 -0
README.md
CHANGED
|
@@ -20,8 +20,9 @@ S-Lab, Nanyang Technological University
|
|
| 20 |
|
| 21 |
:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
|
| 22 |
|
| 23 |
-
|
| 24 |
### Update
|
|
|
|
| 25 |
- **2023.04.09**: Add features of inpainting and colorization for cropped and aligned face images.
|
| 26 |
- **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
|
| 27 |
- **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
|
|
@@ -30,7 +31,7 @@ S-Lab, Nanyang Technological University
|
|
| 30 |
- [**More**](docs/history_changelog.md)
|
| 31 |
|
| 32 |
### TODO
|
| 33 |
-
- [
|
| 34 |
- [x] Add checkpoint and script for face inpainting
|
| 35 |
- [x] Add checkpoint and script for face colorization
|
| 36 |
- [x] ~~Add background image enhancement~~
|
|
@@ -77,13 +78,13 @@ conda install -c conda-forge dlib (only for face detection or cropping with dlib
|
|
| 77 |
### Quick Inference
|
| 78 |
|
| 79 |
#### Download Pre-trained Models:
|
| 80 |
-
Download the facelib and dlib pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases) | [Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command:
|
| 81 |
```
|
| 82 |
python scripts/download_pretrained_models.py facelib
|
| 83 |
python scripts/download_pretrained_models.py dlib (only for dlib face detector)
|
| 84 |
```
|
| 85 |
|
| 86 |
-
Download the CodeFormer pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases) | [Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command:
|
| 87 |
```
|
| 88 |
python scripts/download_pretrained_models.py CodeFormer
|
| 89 |
```
|
|
@@ -141,7 +142,8 @@ python inference_colorization.py --input_path [image folder]|[image path]
|
|
| 141 |
# (check out the examples in inputs/masked_faces)
|
| 142 |
python inference_inpainting.py --input_path [image folder]|[image path]
|
| 143 |
```
|
| 144 |
-
|
|
|
|
| 145 |
|
| 146 |
### Citation
|
| 147 |
If our work is useful for your research, please consider citing:
|
|
@@ -162,4 +164,4 @@ This project is licensed under <a rel="license" href="https://github.com/sczhou/
|
|
| 162 |
This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). Some codes are brought from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). We also adopt [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. Thanks for their awesome works.
|
| 163 |
|
| 164 |
### Contact
|
| 165 |
-
If you have any questions, please feel free to reach me out at `shangchenzhou@gmail.com`.
|
|
|
|
| 20 |
|
| 21 |
:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
|
| 22 |
|
| 23 |
+
|
| 24 |
### Update
|
| 25 |
+
- **2023.04.19**: :whale: Training codes and config files are public available now.
|
| 26 |
- **2023.04.09**: Add features of inpainting and colorization for cropped and aligned face images.
|
| 27 |
- **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
|
| 28 |
- **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
|
|
|
|
| 31 |
- [**More**](docs/history_changelog.md)
|
| 32 |
|
| 33 |
### TODO
|
| 34 |
+
- [x] Add training code and config files
|
| 35 |
- [x] Add checkpoint and script for face inpainting
|
| 36 |
- [x] Add checkpoint and script for face colorization
|
| 37 |
- [x] ~~Add background image enhancement~~
|
|
|
|
| 78 |
### Quick Inference
|
| 79 |
|
| 80 |
#### Download Pre-trained Models:
|
| 81 |
+
Download the facelib and dlib pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0) | [Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command:
|
| 82 |
```
|
| 83 |
python scripts/download_pretrained_models.py facelib
|
| 84 |
python scripts/download_pretrained_models.py dlib (only for dlib face detector)
|
| 85 |
```
|
| 86 |
|
| 87 |
+
Download the CodeFormer pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0) | [Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command:
|
| 88 |
```
|
| 89 |
python scripts/download_pretrained_models.py CodeFormer
|
| 90 |
```
|
|
|
|
| 142 |
# (check out the examples in inputs/masked_faces)
|
| 143 |
python inference_inpainting.py --input_path [image folder]|[image path]
|
| 144 |
```
|
| 145 |
+
#### Training:
|
| 146 |
+
You can find training commands in training documents: [English](docs/train.md) **|** [简体中文](docs/train_CN.md).
|
| 147 |
|
| 148 |
### Citation
|
| 149 |
If our work is useful for your research, please consider citing:
|
|
|
|
| 164 |
This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). Some codes are brought from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). We also adopt [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. Thanks for their awesome works.
|
| 165 |
|
| 166 |
### Contact
|
| 167 |
+
If you have any questions, please feel free to reach me out at `shangchenzhou@gmail.com`.
|
basicsr/archs/codeformer_arch.py
CHANGED
|
@@ -162,9 +162,13 @@ class CodeFormer(VQAutoEncoder):
|
|
| 162 |
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
|
| 163 |
codebook_size=1024, latent_size=256,
|
| 164 |
connect_list=['32', '64', '128', '256'],
|
| 165 |
-
fix_modules=['quantize','generator']):
|
| 166 |
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
if fix_modules is not None:
|
| 169 |
for module in fix_modules:
|
| 170 |
for param in getattr(self, module).parameters():
|
|
|
|
| 162 |
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
|
| 163 |
codebook_size=1024, latent_size=256,
|
| 164 |
connect_list=['32', '64', '128', '256'],
|
| 165 |
+
fix_modules=['quantize','generator'], vqgan_path=None):
|
| 166 |
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
|
| 167 |
|
| 168 |
+
if vqgan_path is not None:
|
| 169 |
+
self.load_state_dict(
|
| 170 |
+
torch.load(vqgan_path, map_location='cpu')['params_ema'])
|
| 171 |
+
|
| 172 |
if fix_modules is not None:
|
| 173 |
for module in fix_modules:
|
| 174 |
for param in getattr(self, module).parameters():
|
basicsr/data/data_util.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
import cv2
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from os import path as osp
|
|
|
|
| 5 |
from torch.nn import functional as F
|
| 6 |
|
| 7 |
from basicsr.data.transforms import mod_crop
|
|
@@ -303,3 +305,88 @@ def duf_downsample(x, kernel_size=13, scale=4):
|
|
| 303 |
if squeeze_flag:
|
| 304 |
x = x.squeeze(0)
|
| 305 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
+
import math
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
from os import path as osp
|
| 6 |
+
from PIL import Image, ImageDraw
|
| 7 |
from torch.nn import functional as F
|
| 8 |
|
| 9 |
from basicsr.data.transforms import mod_crop
|
|
|
|
| 305 |
if squeeze_flag:
|
| 306 |
x = x.squeeze(0)
|
| 307 |
return x
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def brush_stroke_mask(img, color=(255,255,255)):
|
| 311 |
+
min_num_vertex = 8
|
| 312 |
+
max_num_vertex = 28
|
| 313 |
+
mean_angle = 2*math.pi / 5
|
| 314 |
+
angle_range = 2*math.pi / 12
|
| 315 |
+
# training large mask ratio (training setting)
|
| 316 |
+
min_width = 30
|
| 317 |
+
max_width = 70
|
| 318 |
+
# very large mask ratio (test setting and refine after 200k)
|
| 319 |
+
# min_width = 80
|
| 320 |
+
# max_width = 120
|
| 321 |
+
def generate_mask(H, W, img=None):
|
| 322 |
+
average_radius = math.sqrt(H*H+W*W) / 8
|
| 323 |
+
mask = Image.new('RGB', (W, H), 0)
|
| 324 |
+
if img is not None: mask = img # Image.fromarray(img)
|
| 325 |
+
|
| 326 |
+
for _ in range(np.random.randint(1, 4)):
|
| 327 |
+
num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
|
| 328 |
+
angle_min = mean_angle - np.random.uniform(0, angle_range)
|
| 329 |
+
angle_max = mean_angle + np.random.uniform(0, angle_range)
|
| 330 |
+
angles = []
|
| 331 |
+
vertex = []
|
| 332 |
+
for i in range(num_vertex):
|
| 333 |
+
if i % 2 == 0:
|
| 334 |
+
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
|
| 335 |
+
else:
|
| 336 |
+
angles.append(np.random.uniform(angle_min, angle_max))
|
| 337 |
+
|
| 338 |
+
h, w = mask.size
|
| 339 |
+
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
|
| 340 |
+
for i in range(num_vertex):
|
| 341 |
+
r = np.clip(
|
| 342 |
+
np.random.normal(loc=average_radius, scale=average_radius//2),
|
| 343 |
+
0, 2*average_radius)
|
| 344 |
+
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
|
| 345 |
+
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
|
| 346 |
+
vertex.append((int(new_x), int(new_y)))
|
| 347 |
+
|
| 348 |
+
draw = ImageDraw.Draw(mask)
|
| 349 |
+
width = int(np.random.uniform(min_width, max_width))
|
| 350 |
+
draw.line(vertex, fill=color, width=width)
|
| 351 |
+
for v in vertex:
|
| 352 |
+
draw.ellipse((v[0] - width//2,
|
| 353 |
+
v[1] - width//2,
|
| 354 |
+
v[0] + width//2,
|
| 355 |
+
v[1] + width//2),
|
| 356 |
+
fill=color)
|
| 357 |
+
|
| 358 |
+
return mask
|
| 359 |
+
|
| 360 |
+
width, height = img.size
|
| 361 |
+
mask = generate_mask(height, width, img)
|
| 362 |
+
return mask
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def random_ff_mask(shape, max_angle = 10, max_len = 100, max_width = 70, times = 10):
|
| 366 |
+
"""Generate a random free form mask with configuration.
|
| 367 |
+
Args:
|
| 368 |
+
config: Config should have configuration including IMG_SHAPES,
|
| 369 |
+
VERTICAL_MARGIN, HEIGHT, HORIZONTAL_MARGIN, WIDTH.
|
| 370 |
+
Returns:
|
| 371 |
+
tuple: (top, left, height, width)
|
| 372 |
+
Link:
|
| 373 |
+
https://github.com/csqiangwen/DeepFillv2_Pytorch/blob/master/train_dataset.py
|
| 374 |
+
"""
|
| 375 |
+
height = shape[0]
|
| 376 |
+
width = shape[1]
|
| 377 |
+
mask = np.zeros((height, width), np.float32)
|
| 378 |
+
times = np.random.randint(times-5, times)
|
| 379 |
+
for i in range(times):
|
| 380 |
+
start_x = np.random.randint(width)
|
| 381 |
+
start_y = np.random.randint(height)
|
| 382 |
+
for j in range(1 + np.random.randint(5)):
|
| 383 |
+
angle = 0.01 + np.random.randint(max_angle)
|
| 384 |
+
if i % 2 == 0:
|
| 385 |
+
angle = 2 * 3.1415926 - angle
|
| 386 |
+
length = 10 + np.random.randint(max_len-20, max_len)
|
| 387 |
+
brush_w = 5 + np.random.randint(max_width-30, max_width)
|
| 388 |
+
end_x = (start_x + length * np.sin(angle)).astype(np.int32)
|
| 389 |
+
end_y = (start_y + length * np.cos(angle)).astype(np.int32)
|
| 390 |
+
cv2.line(mask, (start_y, start_x), (end_y, end_x), 1.0, brush_w)
|
| 391 |
+
start_x, start_y = end_x, end_y
|
| 392 |
+
return mask.astype(np.float32)
|
basicsr/data/ffhq_blind_joint_dataset.py
ADDED
|
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import math
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os.path as osp
|
| 6 |
+
from scipy.io import loadmat
|
| 7 |
+
from PIL import Image, ImageDraw
|
| 8 |
+
import torch
|
| 9 |
+
import torch.utils.data as data
|
| 10 |
+
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
|
| 11 |
+
adjust_hue, adjust_saturation, normalize)
|
| 12 |
+
from basicsr.data import gaussian_kernels as gaussian_kernels
|
| 13 |
+
from basicsr.data.data_util import paths_from_folder
|
| 14 |
+
from basicsr.data.transforms import augment, img_rotate
|
| 15 |
+
from basicsr.metrics.psnr_ssim import calculate_psnr
|
| 16 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
| 17 |
+
from basicsr.utils.matlab_functions import imresize
|
| 18 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
| 19 |
+
|
| 20 |
+
@DATASET_REGISTRY.register()
|
| 21 |
+
class FFHQBlindJointDataset(data.Dataset):
|
| 22 |
+
|
| 23 |
+
def __init__(self, opt):
|
| 24 |
+
super(FFHQBlindJointDataset, self).__init__()
|
| 25 |
+
logger = get_root_logger()
|
| 26 |
+
self.opt = opt
|
| 27 |
+
# file client (io backend)
|
| 28 |
+
self.file_client = None
|
| 29 |
+
self.io_backend_opt = opt['io_backend']
|
| 30 |
+
|
| 31 |
+
self.gt_folder = opt['dataroot_gt']
|
| 32 |
+
self.gt_size = opt.get('gt_size', 512)
|
| 33 |
+
self.in_size = opt.get('in_size', 512)
|
| 34 |
+
assert self.gt_size >= self.in_size, 'Wrong setting.'
|
| 35 |
+
|
| 36 |
+
self.mean = opt.get('mean', [0.5, 0.5, 0.5])
|
| 37 |
+
self.std = opt.get('std', [0.5, 0.5, 0.5])
|
| 38 |
+
|
| 39 |
+
self.component_path = opt.get('component_path', None)
|
| 40 |
+
self.latent_gt_path = opt.get('latent_gt_path', None)
|
| 41 |
+
|
| 42 |
+
if self.component_path is not None:
|
| 43 |
+
self.crop_components = True
|
| 44 |
+
self.components_dict = torch.load(self.component_path)
|
| 45 |
+
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4)
|
| 46 |
+
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1)
|
| 47 |
+
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3)
|
| 48 |
+
else:
|
| 49 |
+
self.crop_components = False
|
| 50 |
+
|
| 51 |
+
if self.latent_gt_path is not None:
|
| 52 |
+
self.load_latent_gt = True
|
| 53 |
+
self.latent_gt_dict = torch.load(self.latent_gt_path)
|
| 54 |
+
else:
|
| 55 |
+
self.load_latent_gt = False
|
| 56 |
+
|
| 57 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
| 58 |
+
self.io_backend_opt['db_paths'] = self.gt_folder
|
| 59 |
+
if not self.gt_folder.endswith('.lmdb'):
|
| 60 |
+
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}')
|
| 61 |
+
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
|
| 62 |
+
self.paths = [line.split('.')[0] for line in fin]
|
| 63 |
+
else:
|
| 64 |
+
self.paths = paths_from_folder(self.gt_folder)
|
| 65 |
+
|
| 66 |
+
# perform corrupt
|
| 67 |
+
self.use_corrupt = opt.get('use_corrupt', True)
|
| 68 |
+
self.use_motion_kernel = False
|
| 69 |
+
# self.use_motion_kernel = opt.get('use_motion_kernel', True)
|
| 70 |
+
|
| 71 |
+
if self.use_motion_kernel:
|
| 72 |
+
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001)
|
| 73 |
+
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth')
|
| 74 |
+
self.motion_kernels = torch.load(motion_kernel_path)
|
| 75 |
+
|
| 76 |
+
if self.use_corrupt:
|
| 77 |
+
# degradation configurations
|
| 78 |
+
self.blur_kernel_size = self.opt['blur_kernel_size']
|
| 79 |
+
self.kernel_list = self.opt['kernel_list']
|
| 80 |
+
self.kernel_prob = self.opt['kernel_prob']
|
| 81 |
+
# Small degradation
|
| 82 |
+
self.blur_sigma = self.opt['blur_sigma']
|
| 83 |
+
self.downsample_range = self.opt['downsample_range']
|
| 84 |
+
self.noise_range = self.opt['noise_range']
|
| 85 |
+
self.jpeg_range = self.opt['jpeg_range']
|
| 86 |
+
# Large degradation
|
| 87 |
+
self.blur_sigma_large = self.opt['blur_sigma_large']
|
| 88 |
+
self.downsample_range_large = self.opt['downsample_range_large']
|
| 89 |
+
self.noise_range_large = self.opt['noise_range_large']
|
| 90 |
+
self.jpeg_range_large = self.opt['jpeg_range_large']
|
| 91 |
+
|
| 92 |
+
# print
|
| 93 |
+
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
|
| 94 |
+
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
|
| 95 |
+
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
|
| 96 |
+
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
|
| 97 |
+
|
| 98 |
+
# color jitter
|
| 99 |
+
self.color_jitter_prob = opt.get('color_jitter_prob', None)
|
| 100 |
+
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None)
|
| 101 |
+
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
|
| 102 |
+
if self.color_jitter_prob is not None:
|
| 103 |
+
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
|
| 104 |
+
|
| 105 |
+
# to gray
|
| 106 |
+
self.gray_prob = opt.get('gray_prob', 0.0)
|
| 107 |
+
if self.gray_prob is not None:
|
| 108 |
+
logger.info(f'Use random gray. Prob: {self.gray_prob}')
|
| 109 |
+
self.color_jitter_shift /= 255.
|
| 110 |
+
|
| 111 |
+
@staticmethod
|
| 112 |
+
def color_jitter(img, shift):
|
| 113 |
+
"""jitter color: randomly jitter the RGB values, in numpy formats"""
|
| 114 |
+
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
|
| 115 |
+
img = img + jitter_val
|
| 116 |
+
img = np.clip(img, 0, 1)
|
| 117 |
+
return img
|
| 118 |
+
|
| 119 |
+
@staticmethod
|
| 120 |
+
def color_jitter_pt(img, brightness, contrast, saturation, hue):
|
| 121 |
+
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
|
| 122 |
+
fn_idx = torch.randperm(4)
|
| 123 |
+
for fn_id in fn_idx:
|
| 124 |
+
if fn_id == 0 and brightness is not None:
|
| 125 |
+
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
|
| 126 |
+
img = adjust_brightness(img, brightness_factor)
|
| 127 |
+
|
| 128 |
+
if fn_id == 1 and contrast is not None:
|
| 129 |
+
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
|
| 130 |
+
img = adjust_contrast(img, contrast_factor)
|
| 131 |
+
|
| 132 |
+
if fn_id == 2 and saturation is not None:
|
| 133 |
+
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
|
| 134 |
+
img = adjust_saturation(img, saturation_factor)
|
| 135 |
+
|
| 136 |
+
if fn_id == 3 and hue is not None:
|
| 137 |
+
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
|
| 138 |
+
img = adjust_hue(img, hue_factor)
|
| 139 |
+
return img
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def get_component_locations(self, name, status):
|
| 143 |
+
components_bbox = self.components_dict[name]
|
| 144 |
+
if status[0]: # hflip
|
| 145 |
+
# exchange right and left eye
|
| 146 |
+
tmp = components_bbox['left_eye']
|
| 147 |
+
components_bbox['left_eye'] = components_bbox['right_eye']
|
| 148 |
+
components_bbox['right_eye'] = tmp
|
| 149 |
+
# modify the width coordinate
|
| 150 |
+
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0]
|
| 151 |
+
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0]
|
| 152 |
+
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0]
|
| 153 |
+
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0]
|
| 154 |
+
|
| 155 |
+
locations_gt = {}
|
| 156 |
+
locations_in = {}
|
| 157 |
+
for part in ['left_eye', 'right_eye', 'nose', 'mouth']:
|
| 158 |
+
mean = components_bbox[part][0:2]
|
| 159 |
+
half_len = components_bbox[part][2]
|
| 160 |
+
if 'eye' in part:
|
| 161 |
+
half_len *= self.eye_enlarge_ratio
|
| 162 |
+
elif part == 'nose':
|
| 163 |
+
half_len *= self.nose_enlarge_ratio
|
| 164 |
+
elif part == 'mouth':
|
| 165 |
+
half_len *= self.mouth_enlarge_ratio
|
| 166 |
+
loc = np.hstack((mean - half_len + 1, mean + half_len))
|
| 167 |
+
loc = torch.from_numpy(loc).float()
|
| 168 |
+
locations_gt[part] = loc
|
| 169 |
+
loc_in = loc/(self.gt_size//self.in_size)
|
| 170 |
+
locations_in[part] = loc_in
|
| 171 |
+
return locations_gt, locations_in
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def __getitem__(self, index):
|
| 175 |
+
if self.file_client is None:
|
| 176 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
| 177 |
+
|
| 178 |
+
# load gt image
|
| 179 |
+
gt_path = self.paths[index]
|
| 180 |
+
name = osp.basename(gt_path)[:-4]
|
| 181 |
+
img_bytes = self.file_client.get(gt_path)
|
| 182 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
| 183 |
+
|
| 184 |
+
# random horizontal flip
|
| 185 |
+
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
|
| 186 |
+
|
| 187 |
+
if self.load_latent_gt:
|
| 188 |
+
if status[0]:
|
| 189 |
+
latent_gt = self.latent_gt_dict['hflip'][name]
|
| 190 |
+
else:
|
| 191 |
+
latent_gt = self.latent_gt_dict['orig'][name]
|
| 192 |
+
|
| 193 |
+
if self.crop_components:
|
| 194 |
+
locations_gt, locations_in = self.get_component_locations(name, status)
|
| 195 |
+
|
| 196 |
+
# generate in image
|
| 197 |
+
img_in = img_gt
|
| 198 |
+
if self.use_corrupt:
|
| 199 |
+
# motion blur
|
| 200 |
+
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
|
| 201 |
+
m_i = random.randint(0,31)
|
| 202 |
+
k = self.motion_kernels[f'{m_i:02d}']
|
| 203 |
+
img_in = cv2.filter2D(img_in,-1,k)
|
| 204 |
+
|
| 205 |
+
# gaussian blur
|
| 206 |
+
kernel = gaussian_kernels.random_mixed_kernels(
|
| 207 |
+
self.kernel_list,
|
| 208 |
+
self.kernel_prob,
|
| 209 |
+
self.blur_kernel_size,
|
| 210 |
+
self.blur_sigma,
|
| 211 |
+
self.blur_sigma,
|
| 212 |
+
[-math.pi, math.pi],
|
| 213 |
+
noise_range=None)
|
| 214 |
+
img_in = cv2.filter2D(img_in, -1, kernel)
|
| 215 |
+
|
| 216 |
+
# downsample
|
| 217 |
+
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
|
| 218 |
+
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
|
| 219 |
+
|
| 220 |
+
# noise
|
| 221 |
+
if self.noise_range is not None:
|
| 222 |
+
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.)
|
| 223 |
+
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
|
| 224 |
+
img_in = img_in + noise
|
| 225 |
+
img_in = np.clip(img_in, 0, 1)
|
| 226 |
+
|
| 227 |
+
# jpeg
|
| 228 |
+
if self.jpeg_range is not None:
|
| 229 |
+
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
|
| 230 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
|
| 231 |
+
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
|
| 232 |
+
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 233 |
+
|
| 234 |
+
# resize to in_size
|
| 235 |
+
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# generate in_large with large degradation
|
| 239 |
+
img_in_large = img_gt
|
| 240 |
+
|
| 241 |
+
if self.use_corrupt:
|
| 242 |
+
# motion blur
|
| 243 |
+
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
|
| 244 |
+
m_i = random.randint(0,31)
|
| 245 |
+
k = self.motion_kernels[f'{m_i:02d}']
|
| 246 |
+
img_in_large = cv2.filter2D(img_in_large,-1,k)
|
| 247 |
+
|
| 248 |
+
# gaussian blur
|
| 249 |
+
kernel = gaussian_kernels.random_mixed_kernels(
|
| 250 |
+
self.kernel_list,
|
| 251 |
+
self.kernel_prob,
|
| 252 |
+
self.blur_kernel_size,
|
| 253 |
+
self.blur_sigma_large,
|
| 254 |
+
self.blur_sigma_large,
|
| 255 |
+
[-math.pi, math.pi],
|
| 256 |
+
noise_range=None)
|
| 257 |
+
img_in_large = cv2.filter2D(img_in_large, -1, kernel)
|
| 258 |
+
|
| 259 |
+
# downsample
|
| 260 |
+
scale = np.random.uniform(self.downsample_range_large[0], self.downsample_range_large[1])
|
| 261 |
+
img_in_large = cv2.resize(img_in_large, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
|
| 262 |
+
|
| 263 |
+
# noise
|
| 264 |
+
if self.noise_range_large is not None:
|
| 265 |
+
noise_sigma = np.random.uniform(self.noise_range_large[0] / 255., self.noise_range_large[1] / 255.)
|
| 266 |
+
noise = np.float32(np.random.randn(*(img_in_large.shape))) * noise_sigma
|
| 267 |
+
img_in_large = img_in_large + noise
|
| 268 |
+
img_in_large = np.clip(img_in_large, 0, 1)
|
| 269 |
+
|
| 270 |
+
# jpeg
|
| 271 |
+
if self.jpeg_range_large is not None:
|
| 272 |
+
jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
|
| 273 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
|
| 274 |
+
_, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
|
| 275 |
+
img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 276 |
+
|
| 277 |
+
# resize to in_size
|
| 278 |
+
img_in_large = cv2.resize(img_in_large, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# random color jitter (only for lq)
|
| 282 |
+
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
|
| 283 |
+
img_in = self.color_jitter(img_in, self.color_jitter_shift)
|
| 284 |
+
img_in_large = self.color_jitter(img_in_large, self.color_jitter_shift)
|
| 285 |
+
# random to gray (only for lq)
|
| 286 |
+
if self.gray_prob and np.random.uniform() < self.gray_prob:
|
| 287 |
+
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
|
| 288 |
+
img_in = np.tile(img_in[:, :, None], [1, 1, 3])
|
| 289 |
+
img_in_large = cv2.cvtColor(img_in_large, cv2.COLOR_BGR2GRAY)
|
| 290 |
+
img_in_large = np.tile(img_in_large[:, :, None], [1, 1, 3])
|
| 291 |
+
|
| 292 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
| 293 |
+
img_in, img_in_large, img_gt = img2tensor([img_in, img_in_large, img_gt], bgr2rgb=True, float32=True)
|
| 294 |
+
|
| 295 |
+
# random color jitter (pytorch version) (only for lq)
|
| 296 |
+
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
|
| 297 |
+
brightness = self.opt.get('brightness', (0.5, 1.5))
|
| 298 |
+
contrast = self.opt.get('contrast', (0.5, 1.5))
|
| 299 |
+
saturation = self.opt.get('saturation', (0, 1.5))
|
| 300 |
+
hue = self.opt.get('hue', (-0.1, 0.1))
|
| 301 |
+
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue)
|
| 302 |
+
img_in_large = self.color_jitter_pt(img_in_large, brightness, contrast, saturation, hue)
|
| 303 |
+
|
| 304 |
+
# round and clip
|
| 305 |
+
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255.
|
| 306 |
+
img_in_large = np.clip((img_in_large * 255.0).round(), 0, 255) / 255.
|
| 307 |
+
|
| 308 |
+
# Set vgg range_norm=True if use the normalization here
|
| 309 |
+
# normalize
|
| 310 |
+
normalize(img_in, self.mean, self.std, inplace=True)
|
| 311 |
+
normalize(img_in_large, self.mean, self.std, inplace=True)
|
| 312 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
| 313 |
+
|
| 314 |
+
return_dict = {'in': img_in, 'in_large_de': img_in_large, 'gt': img_gt, 'gt_path': gt_path}
|
| 315 |
+
|
| 316 |
+
if self.crop_components:
|
| 317 |
+
return_dict['locations_in'] = locations_in
|
| 318 |
+
return_dict['locations_gt'] = locations_gt
|
| 319 |
+
|
| 320 |
+
if self.load_latent_gt:
|
| 321 |
+
return_dict['latent_gt'] = latent_gt
|
| 322 |
+
|
| 323 |
+
return return_dict
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def __len__(self):
|
| 327 |
+
return len(self.paths)
|
basicsr/data/paired_image_dataset.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch.utils import data as data
|
| 2 |
+
from torchvision.transforms.functional import normalize
|
| 3 |
+
|
| 4 |
+
from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb, paired_paths_from_meta_info_file
|
| 5 |
+
from basicsr.data.transforms import augment, paired_random_crop
|
| 6 |
+
from basicsr.utils import FileClient, imfrombytes, img2tensor
|
| 7 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@DATASET_REGISTRY.register()
|
| 11 |
+
class PairedImageDataset(data.Dataset):
|
| 12 |
+
"""Paired image dataset for image restoration.
|
| 13 |
+
|
| 14 |
+
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
|
| 15 |
+
GT image pairs.
|
| 16 |
+
|
| 17 |
+
There are three modes:
|
| 18 |
+
1. 'lmdb': Use lmdb files.
|
| 19 |
+
If opt['io_backend'] == lmdb.
|
| 20 |
+
2. 'meta_info_file': Use meta information file to generate paths.
|
| 21 |
+
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
|
| 22 |
+
3. 'folder': Scan folders to generate paths.
|
| 23 |
+
The rest.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
| 27 |
+
dataroot_gt (str): Data root path for gt.
|
| 28 |
+
dataroot_lq (str): Data root path for lq.
|
| 29 |
+
meta_info_file (str): Path for meta information file.
|
| 30 |
+
io_backend (dict): IO backend type and other kwarg.
|
| 31 |
+
filename_tmpl (str): Template for each filename. Note that the
|
| 32 |
+
template excludes the file extension. Default: '{}'.
|
| 33 |
+
gt_size (int): Cropped patched size for gt patches.
|
| 34 |
+
use_flip (bool): Use horizontal flips.
|
| 35 |
+
use_rot (bool): Use rotation (use vertical flip and transposing h
|
| 36 |
+
and w for implementation).
|
| 37 |
+
|
| 38 |
+
scale (bool): Scale, which will be added automatically.
|
| 39 |
+
phase (str): 'train' or 'val'.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
def __init__(self, opt):
|
| 43 |
+
super(PairedImageDataset, self).__init__()
|
| 44 |
+
self.opt = opt
|
| 45 |
+
# file client (io backend)
|
| 46 |
+
self.file_client = None
|
| 47 |
+
self.io_backend_opt = opt['io_backend']
|
| 48 |
+
self.mean = opt['mean'] if 'mean' in opt else None
|
| 49 |
+
self.std = opt['std'] if 'std' in opt else None
|
| 50 |
+
|
| 51 |
+
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
|
| 52 |
+
if 'filename_tmpl' in opt:
|
| 53 |
+
self.filename_tmpl = opt['filename_tmpl']
|
| 54 |
+
else:
|
| 55 |
+
self.filename_tmpl = '{}'
|
| 56 |
+
|
| 57 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
| 58 |
+
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
|
| 59 |
+
self.io_backend_opt['client_keys'] = ['lq', 'gt']
|
| 60 |
+
self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
|
| 61 |
+
elif 'meta_info_file' in self.opt and self.opt['meta_info_file'] is not None:
|
| 62 |
+
self.paths = paired_paths_from_meta_info_file([self.lq_folder, self.gt_folder], ['lq', 'gt'],
|
| 63 |
+
self.opt['meta_info_file'], self.filename_tmpl)
|
| 64 |
+
else:
|
| 65 |
+
self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
|
| 66 |
+
|
| 67 |
+
def __getitem__(self, index):
|
| 68 |
+
if self.file_client is None:
|
| 69 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
| 70 |
+
|
| 71 |
+
scale = self.opt['scale']
|
| 72 |
+
|
| 73 |
+
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
|
| 74 |
+
# image range: [0, 1], float32.
|
| 75 |
+
gt_path = self.paths[index]['gt_path']
|
| 76 |
+
img_bytes = self.file_client.get(gt_path, 'gt')
|
| 77 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
| 78 |
+
lq_path = self.paths[index]['lq_path']
|
| 79 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
| 80 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
| 81 |
+
|
| 82 |
+
# augmentation for training
|
| 83 |
+
if self.opt['phase'] == 'train':
|
| 84 |
+
gt_size = self.opt['gt_size']
|
| 85 |
+
# random crop
|
| 86 |
+
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
|
| 87 |
+
# flip, rotation
|
| 88 |
+
img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'], self.opt['use_rot'])
|
| 89 |
+
|
| 90 |
+
# TODO: color space transform
|
| 91 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
| 92 |
+
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
|
| 93 |
+
# normalize
|
| 94 |
+
if self.mean is not None or self.std is not None:
|
| 95 |
+
normalize(img_lq, self.mean, self.std, inplace=True)
|
| 96 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
| 97 |
+
|
| 98 |
+
return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
|
| 99 |
+
|
| 100 |
+
def __len__(self):
|
| 101 |
+
return len(self.paths)
|
basicsr/models/base_model.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
| 7 |
+
|
| 8 |
+
from basicsr.models import lr_scheduler as lr_scheduler
|
| 9 |
+
from basicsr.utils.dist_util import master_only
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger('basicsr')
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class BaseModel():
|
| 15 |
+
"""Base model."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, opt):
|
| 18 |
+
self.opt = opt
|
| 19 |
+
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
|
| 20 |
+
self.is_train = opt['is_train']
|
| 21 |
+
self.schedulers = []
|
| 22 |
+
self.optimizers = []
|
| 23 |
+
|
| 24 |
+
def feed_data(self, data):
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
def optimize_parameters(self):
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
def get_current_visuals(self):
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
def save(self, epoch, current_iter):
|
| 34 |
+
"""Save networks and training state."""
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
+
def validation(self, dataloader, current_iter, tb_logger, save_img=False):
|
| 38 |
+
"""Validation function.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
dataloader (torch.utils.data.DataLoader): Validation dataloader.
|
| 42 |
+
current_iter (int): Current iteration.
|
| 43 |
+
tb_logger (tensorboard logger): Tensorboard logger.
|
| 44 |
+
save_img (bool): Whether to save images. Default: False.
|
| 45 |
+
"""
|
| 46 |
+
if self.opt['dist']:
|
| 47 |
+
self.dist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 48 |
+
else:
|
| 49 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 50 |
+
|
| 51 |
+
def model_ema(self, decay=0.999):
|
| 52 |
+
net_g = self.get_bare_model(self.net_g)
|
| 53 |
+
|
| 54 |
+
net_g_params = dict(net_g.named_parameters())
|
| 55 |
+
net_g_ema_params = dict(self.net_g_ema.named_parameters())
|
| 56 |
+
|
| 57 |
+
for k in net_g_ema_params.keys():
|
| 58 |
+
net_g_ema_params[k].data.mul_(decay).add_(net_g_params[k].data, alpha=1 - decay)
|
| 59 |
+
|
| 60 |
+
def get_current_log(self):
|
| 61 |
+
return self.log_dict
|
| 62 |
+
|
| 63 |
+
def model_to_device(self, net):
|
| 64 |
+
"""Model to device. It also warps models with DistributedDataParallel
|
| 65 |
+
or DataParallel.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
net (nn.Module)
|
| 69 |
+
"""
|
| 70 |
+
net = net.to(self.device)
|
| 71 |
+
if self.opt['dist']:
|
| 72 |
+
find_unused_parameters = self.opt.get('find_unused_parameters', False)
|
| 73 |
+
net = DistributedDataParallel(
|
| 74 |
+
net, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters)
|
| 75 |
+
elif self.opt['num_gpu'] > 1:
|
| 76 |
+
net = DataParallel(net)
|
| 77 |
+
return net
|
| 78 |
+
|
| 79 |
+
def get_optimizer(self, optim_type, params, lr, **kwargs):
|
| 80 |
+
if optim_type == 'Adam':
|
| 81 |
+
optimizer = torch.optim.Adam(params, lr, **kwargs)
|
| 82 |
+
else:
|
| 83 |
+
raise NotImplementedError(f'optimizer {optim_type} is not supperted yet.')
|
| 84 |
+
return optimizer
|
| 85 |
+
|
| 86 |
+
def setup_schedulers(self):
|
| 87 |
+
"""Set up schedulers."""
|
| 88 |
+
train_opt = self.opt['train']
|
| 89 |
+
scheduler_type = train_opt['scheduler'].pop('type')
|
| 90 |
+
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
|
| 91 |
+
for optimizer in self.optimizers:
|
| 92 |
+
self.schedulers.append(lr_scheduler.MultiStepRestartLR(optimizer, **train_opt['scheduler']))
|
| 93 |
+
elif scheduler_type == 'CosineAnnealingRestartLR':
|
| 94 |
+
for optimizer in self.optimizers:
|
| 95 |
+
self.schedulers.append(lr_scheduler.CosineAnnealingRestartLR(optimizer, **train_opt['scheduler']))
|
| 96 |
+
else:
|
| 97 |
+
raise NotImplementedError(f'Scheduler {scheduler_type} is not implemented yet.')
|
| 98 |
+
|
| 99 |
+
def get_bare_model(self, net):
|
| 100 |
+
"""Get bare model, especially under wrapping with
|
| 101 |
+
DistributedDataParallel or DataParallel.
|
| 102 |
+
"""
|
| 103 |
+
if isinstance(net, (DataParallel, DistributedDataParallel)):
|
| 104 |
+
net = net.module
|
| 105 |
+
return net
|
| 106 |
+
|
| 107 |
+
@master_only
|
| 108 |
+
def print_network(self, net):
|
| 109 |
+
"""Print the str and parameter number of a network.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
net (nn.Module)
|
| 113 |
+
"""
|
| 114 |
+
if isinstance(net, (DataParallel, DistributedDataParallel)):
|
| 115 |
+
net_cls_str = (f'{net.__class__.__name__} - ' f'{net.module.__class__.__name__}')
|
| 116 |
+
else:
|
| 117 |
+
net_cls_str = f'{net.__class__.__name__}'
|
| 118 |
+
|
| 119 |
+
net = self.get_bare_model(net)
|
| 120 |
+
net_str = str(net)
|
| 121 |
+
net_params = sum(map(lambda x: x.numel(), net.parameters()))
|
| 122 |
+
|
| 123 |
+
logger.info(f'Network: {net_cls_str}, with parameters: {net_params:,d}')
|
| 124 |
+
logger.info(net_str)
|
| 125 |
+
|
| 126 |
+
def _set_lr(self, lr_groups_l):
|
| 127 |
+
"""Set learning rate for warmup.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
lr_groups_l (list): List for lr_groups, each for an optimizer.
|
| 131 |
+
"""
|
| 132 |
+
for optimizer, lr_groups in zip(self.optimizers, lr_groups_l):
|
| 133 |
+
for param_group, lr in zip(optimizer.param_groups, lr_groups):
|
| 134 |
+
param_group['lr'] = lr
|
| 135 |
+
|
| 136 |
+
def _get_init_lr(self):
|
| 137 |
+
"""Get the initial lr, which is set by the scheduler.
|
| 138 |
+
"""
|
| 139 |
+
init_lr_groups_l = []
|
| 140 |
+
for optimizer in self.optimizers:
|
| 141 |
+
init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups])
|
| 142 |
+
return init_lr_groups_l
|
| 143 |
+
|
| 144 |
+
def update_learning_rate(self, current_iter, warmup_iter=-1):
|
| 145 |
+
"""Update learning rate.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
current_iter (int): Current iteration.
|
| 149 |
+
warmup_iter (int): Warmup iter numbers. -1 for no warmup.
|
| 150 |
+
Default: -1.
|
| 151 |
+
"""
|
| 152 |
+
if current_iter > 1:
|
| 153 |
+
for scheduler in self.schedulers:
|
| 154 |
+
scheduler.step()
|
| 155 |
+
# set up warm-up learning rate
|
| 156 |
+
if current_iter < warmup_iter:
|
| 157 |
+
# get initial lr for each group
|
| 158 |
+
init_lr_g_l = self._get_init_lr()
|
| 159 |
+
# modify warming-up learning rates
|
| 160 |
+
# currently only support linearly warm up
|
| 161 |
+
warm_up_lr_l = []
|
| 162 |
+
for init_lr_g in init_lr_g_l:
|
| 163 |
+
warm_up_lr_l.append([v / warmup_iter * current_iter for v in init_lr_g])
|
| 164 |
+
# set learning rate
|
| 165 |
+
self._set_lr(warm_up_lr_l)
|
| 166 |
+
|
| 167 |
+
def get_current_learning_rate(self):
|
| 168 |
+
return [param_group['lr'] for param_group in self.optimizers[0].param_groups]
|
| 169 |
+
|
| 170 |
+
@master_only
|
| 171 |
+
def save_network(self, net, net_label, current_iter, param_key='params'):
|
| 172 |
+
"""Save networks.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
net (nn.Module | list[nn.Module]): Network(s) to be saved.
|
| 176 |
+
net_label (str): Network label.
|
| 177 |
+
current_iter (int): Current iter number.
|
| 178 |
+
param_key (str | list[str]): The parameter key(s) to save network.
|
| 179 |
+
Default: 'params'.
|
| 180 |
+
"""
|
| 181 |
+
if current_iter == -1:
|
| 182 |
+
current_iter = 'latest'
|
| 183 |
+
save_filename = f'{net_label}_{current_iter}.pth'
|
| 184 |
+
save_path = os.path.join(self.opt['path']['models'], save_filename)
|
| 185 |
+
|
| 186 |
+
net = net if isinstance(net, list) else [net]
|
| 187 |
+
param_key = param_key if isinstance(param_key, list) else [param_key]
|
| 188 |
+
assert len(net) == len(param_key), 'The lengths of net and param_key should be the same.'
|
| 189 |
+
|
| 190 |
+
save_dict = {}
|
| 191 |
+
for net_, param_key_ in zip(net, param_key):
|
| 192 |
+
net_ = self.get_bare_model(net_)
|
| 193 |
+
state_dict = net_.state_dict()
|
| 194 |
+
for key, param in state_dict.items():
|
| 195 |
+
if key.startswith('module.'): # remove unnecessary 'module.'
|
| 196 |
+
key = key[7:]
|
| 197 |
+
state_dict[key] = param.cpu()
|
| 198 |
+
save_dict[param_key_] = state_dict
|
| 199 |
+
|
| 200 |
+
torch.save(save_dict, save_path)
|
| 201 |
+
|
| 202 |
+
def _print_different_keys_loading(self, crt_net, load_net, strict=True):
|
| 203 |
+
"""Print keys with differnet name or different size when loading models.
|
| 204 |
+
|
| 205 |
+
1. Print keys with differnet names.
|
| 206 |
+
2. If strict=False, print the same key but with different tensor size.
|
| 207 |
+
It also ignore these keys with different sizes (not load).
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
crt_net (torch model): Current network.
|
| 211 |
+
load_net (dict): Loaded network.
|
| 212 |
+
strict (bool): Whether strictly loaded. Default: True.
|
| 213 |
+
"""
|
| 214 |
+
crt_net = self.get_bare_model(crt_net)
|
| 215 |
+
crt_net = crt_net.state_dict()
|
| 216 |
+
crt_net_keys = set(crt_net.keys())
|
| 217 |
+
load_net_keys = set(load_net.keys())
|
| 218 |
+
|
| 219 |
+
if crt_net_keys != load_net_keys:
|
| 220 |
+
logger.warning('Current net - loaded net:')
|
| 221 |
+
for v in sorted(list(crt_net_keys - load_net_keys)):
|
| 222 |
+
logger.warning(f' {v}')
|
| 223 |
+
logger.warning('Loaded net - current net:')
|
| 224 |
+
for v in sorted(list(load_net_keys - crt_net_keys)):
|
| 225 |
+
logger.warning(f' {v}')
|
| 226 |
+
|
| 227 |
+
# check the size for the same keys
|
| 228 |
+
if not strict:
|
| 229 |
+
common_keys = crt_net_keys & load_net_keys
|
| 230 |
+
for k in common_keys:
|
| 231 |
+
if crt_net[k].size() != load_net[k].size():
|
| 232 |
+
logger.warning(f'Size different, ignore [{k}]: crt_net: '
|
| 233 |
+
f'{crt_net[k].shape}; load_net: {load_net[k].shape}')
|
| 234 |
+
load_net[k + '.ignore'] = load_net.pop(k)
|
| 235 |
+
|
| 236 |
+
def load_network(self, net, load_path, strict=True, param_key='params'):
|
| 237 |
+
"""Load network.
|
| 238 |
+
|
| 239 |
+
Args:
|
| 240 |
+
load_path (str): The path of networks to be loaded.
|
| 241 |
+
net (nn.Module): Network.
|
| 242 |
+
strict (bool): Whether strictly loaded.
|
| 243 |
+
param_key (str): The parameter key of loaded network. If set to
|
| 244 |
+
None, use the root 'path'.
|
| 245 |
+
Default: 'params'.
|
| 246 |
+
"""
|
| 247 |
+
net = self.get_bare_model(net)
|
| 248 |
+
logger.info(f'Loading {net.__class__.__name__} model from {load_path}.')
|
| 249 |
+
load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
|
| 250 |
+
if param_key is not None:
|
| 251 |
+
if param_key not in load_net and 'params' in load_net:
|
| 252 |
+
param_key = 'params'
|
| 253 |
+
logger.info('Loading: params_ema does not exist, use params.')
|
| 254 |
+
load_net = load_net[param_key]
|
| 255 |
+
# remove unnecessary 'module.'
|
| 256 |
+
for k, v in deepcopy(load_net).items():
|
| 257 |
+
if k.startswith('module.'):
|
| 258 |
+
load_net[k[7:]] = v
|
| 259 |
+
load_net.pop(k)
|
| 260 |
+
self._print_different_keys_loading(net, load_net, strict)
|
| 261 |
+
net.load_state_dict(load_net, strict=strict)
|
| 262 |
+
|
| 263 |
+
@master_only
|
| 264 |
+
def save_training_state(self, epoch, current_iter):
|
| 265 |
+
"""Save training states during training, which will be used for
|
| 266 |
+
resuming.
|
| 267 |
+
|
| 268 |
+
Args:
|
| 269 |
+
epoch (int): Current epoch.
|
| 270 |
+
current_iter (int): Current iteration.
|
| 271 |
+
"""
|
| 272 |
+
if current_iter != -1:
|
| 273 |
+
state = {'epoch': epoch, 'iter': current_iter, 'optimizers': [], 'schedulers': []}
|
| 274 |
+
for o in self.optimizers:
|
| 275 |
+
state['optimizers'].append(o.state_dict())
|
| 276 |
+
for s in self.schedulers:
|
| 277 |
+
state['schedulers'].append(s.state_dict())
|
| 278 |
+
save_filename = f'{current_iter}.state'
|
| 279 |
+
save_path = os.path.join(self.opt['path']['training_states'], save_filename)
|
| 280 |
+
torch.save(state, save_path)
|
| 281 |
+
|
| 282 |
+
def resume_training(self, resume_state):
|
| 283 |
+
"""Reload the optimizers and schedulers for resumed training.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
resume_state (dict): Resume state.
|
| 287 |
+
"""
|
| 288 |
+
resume_optimizers = resume_state['optimizers']
|
| 289 |
+
resume_schedulers = resume_state['schedulers']
|
| 290 |
+
assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers'
|
| 291 |
+
assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers'
|
| 292 |
+
for i, o in enumerate(resume_optimizers):
|
| 293 |
+
self.optimizers[i].load_state_dict(o)
|
| 294 |
+
for i, s in enumerate(resume_schedulers):
|
| 295 |
+
self.schedulers[i].load_state_dict(s)
|
| 296 |
+
|
| 297 |
+
def reduce_loss_dict(self, loss_dict):
|
| 298 |
+
"""reduce loss dict.
|
| 299 |
+
|
| 300 |
+
In distributed training, it averages the losses among different GPUs .
|
| 301 |
+
|
| 302 |
+
Args:
|
| 303 |
+
loss_dict (OrderedDict): Loss dict.
|
| 304 |
+
"""
|
| 305 |
+
with torch.no_grad():
|
| 306 |
+
if self.opt['dist']:
|
| 307 |
+
keys = []
|
| 308 |
+
losses = []
|
| 309 |
+
for name, value in loss_dict.items():
|
| 310 |
+
keys.append(name)
|
| 311 |
+
losses.append(value)
|
| 312 |
+
losses = torch.stack(losses, 0)
|
| 313 |
+
torch.distributed.reduce(losses, dst=0)
|
| 314 |
+
if self.opt['rank'] == 0:
|
| 315 |
+
losses /= self.opt['world_size']
|
| 316 |
+
loss_dict = {key: loss for key, loss in zip(keys, losses)}
|
| 317 |
+
|
| 318 |
+
log_dict = OrderedDict()
|
| 319 |
+
for name, value in loss_dict.items():
|
| 320 |
+
log_dict[name] = value.mean().item()
|
| 321 |
+
|
| 322 |
+
return log_dict
|
basicsr/models/codeformer_idx_model.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from os import path as osp
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
from basicsr.archs import build_network
|
| 7 |
+
from basicsr.metrics import calculate_metric
|
| 8 |
+
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
| 9 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from .sr_model import SRModel
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@MODEL_REGISTRY.register()
|
| 15 |
+
class CodeFormerIdxModel(SRModel):
|
| 16 |
+
def feed_data(self, data):
|
| 17 |
+
self.gt = data['gt'].to(self.device)
|
| 18 |
+
self.input = data['in'].to(self.device)
|
| 19 |
+
self.b = self.gt.shape[0]
|
| 20 |
+
|
| 21 |
+
if 'latent_gt' in data:
|
| 22 |
+
self.idx_gt = data['latent_gt'].to(self.device)
|
| 23 |
+
self.idx_gt = self.idx_gt.view(self.b, -1)
|
| 24 |
+
else:
|
| 25 |
+
self.idx_gt = None
|
| 26 |
+
|
| 27 |
+
def init_training_settings(self):
|
| 28 |
+
logger = get_root_logger()
|
| 29 |
+
train_opt = self.opt['train']
|
| 30 |
+
|
| 31 |
+
self.ema_decay = train_opt.get('ema_decay', 0)
|
| 32 |
+
if self.ema_decay > 0:
|
| 33 |
+
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
| 34 |
+
# define network net_g with Exponential Moving Average (EMA)
|
| 35 |
+
# net_g_ema is used only for testing on one GPU and saving
|
| 36 |
+
# There is no need to wrap with DistributedDataParallel
|
| 37 |
+
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
| 38 |
+
# load pretrained model
|
| 39 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 40 |
+
if load_path is not None:
|
| 41 |
+
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
| 42 |
+
else:
|
| 43 |
+
self.model_ema(0) # copy net_g weight
|
| 44 |
+
self.net_g_ema.eval()
|
| 45 |
+
|
| 46 |
+
if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
|
| 47 |
+
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
| 48 |
+
self.hq_vqgan_fix.eval()
|
| 49 |
+
self.generate_idx_gt = True
|
| 50 |
+
for param in self.hq_vqgan_fix.parameters():
|
| 51 |
+
param.requires_grad = False
|
| 52 |
+
else:
|
| 53 |
+
self.generate_idx_gt = False
|
| 54 |
+
|
| 55 |
+
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
| 56 |
+
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
| 57 |
+
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
|
| 58 |
+
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
|
| 59 |
+
|
| 60 |
+
self.net_g.train()
|
| 61 |
+
|
| 62 |
+
# set up optimizers and schedulers
|
| 63 |
+
self.setup_optimizers()
|
| 64 |
+
self.setup_schedulers()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def setup_optimizers(self):
|
| 68 |
+
train_opt = self.opt['train']
|
| 69 |
+
# optimizer g
|
| 70 |
+
optim_params_g = []
|
| 71 |
+
for k, v in self.net_g.named_parameters():
|
| 72 |
+
if v.requires_grad:
|
| 73 |
+
optim_params_g.append(v)
|
| 74 |
+
else:
|
| 75 |
+
logger = get_root_logger()
|
| 76 |
+
logger.warning(f'Params {k} will not be optimized.')
|
| 77 |
+
optim_type = train_opt['optim_g'].pop('type')
|
| 78 |
+
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
|
| 79 |
+
self.optimizers.append(self.optimizer_g)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def optimize_parameters(self, current_iter):
|
| 83 |
+
logger = get_root_logger()
|
| 84 |
+
# optimize net_g
|
| 85 |
+
self.optimizer_g.zero_grad()
|
| 86 |
+
|
| 87 |
+
if self.generate_idx_gt:
|
| 88 |
+
x = self.hq_vqgan_fix.encoder(self.gt)
|
| 89 |
+
_, _, quant_stats = self.hq_vqgan_fix.quantize(x)
|
| 90 |
+
min_encoding_indices = quant_stats['min_encoding_indices']
|
| 91 |
+
self.idx_gt = min_encoding_indices.view(self.b, -1)
|
| 92 |
+
|
| 93 |
+
if self.hq_feat_loss:
|
| 94 |
+
# quant_feats
|
| 95 |
+
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
|
| 96 |
+
|
| 97 |
+
logits, lq_feat = self.net_g(self.input, w=0, code_only=True)
|
| 98 |
+
|
| 99 |
+
l_g_total = 0
|
| 100 |
+
loss_dict = OrderedDict()
|
| 101 |
+
# hq_feat_loss
|
| 102 |
+
if self.hq_feat_loss: # codebook loss
|
| 103 |
+
l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
|
| 104 |
+
l_g_total += l_feat_encoder
|
| 105 |
+
loss_dict['l_feat_encoder'] = l_feat_encoder
|
| 106 |
+
|
| 107 |
+
# cross_entropy_loss
|
| 108 |
+
if self.cross_entropy_loss:
|
| 109 |
+
# b(hw)n -> bn(hw)
|
| 110 |
+
cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
|
| 111 |
+
l_g_total += cross_entropy_loss
|
| 112 |
+
loss_dict['cross_entropy_loss'] = cross_entropy_loss
|
| 113 |
+
|
| 114 |
+
l_g_total.backward()
|
| 115 |
+
self.optimizer_g.step()
|
| 116 |
+
|
| 117 |
+
if self.ema_decay > 0:
|
| 118 |
+
self.model_ema(decay=self.ema_decay)
|
| 119 |
+
|
| 120 |
+
self.log_dict = self.reduce_loss_dict(loss_dict)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def test(self):
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
if hasattr(self, 'net_g_ema'):
|
| 126 |
+
self.net_g_ema.eval()
|
| 127 |
+
self.output, _, _ = self.net_g_ema(self.input, w=0)
|
| 128 |
+
else:
|
| 129 |
+
logger = get_root_logger()
|
| 130 |
+
logger.warning('Do not have self.net_g_ema, use self.net_g.')
|
| 131 |
+
self.net_g.eval()
|
| 132 |
+
self.output, _, _ = self.net_g(self.input, w=0)
|
| 133 |
+
self.net_g.train()
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 137 |
+
if self.opt['rank'] == 0:
|
| 138 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 142 |
+
dataset_name = dataloader.dataset.opt['name']
|
| 143 |
+
with_metrics = self.opt['val'].get('metrics') is not None
|
| 144 |
+
if with_metrics:
|
| 145 |
+
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
| 146 |
+
pbar = tqdm(total=len(dataloader), unit='image')
|
| 147 |
+
|
| 148 |
+
for idx, val_data in enumerate(dataloader):
|
| 149 |
+
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
|
| 150 |
+
self.feed_data(val_data)
|
| 151 |
+
self.test()
|
| 152 |
+
|
| 153 |
+
visuals = self.get_current_visuals()
|
| 154 |
+
sr_img = tensor2img([visuals['result']])
|
| 155 |
+
if 'gt' in visuals:
|
| 156 |
+
gt_img = tensor2img([visuals['gt']])
|
| 157 |
+
del self.gt
|
| 158 |
+
|
| 159 |
+
# tentative for out of GPU memory
|
| 160 |
+
del self.lq
|
| 161 |
+
del self.output
|
| 162 |
+
torch.cuda.empty_cache()
|
| 163 |
+
|
| 164 |
+
if save_img:
|
| 165 |
+
if self.opt['is_train']:
|
| 166 |
+
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
|
| 167 |
+
f'{img_name}_{current_iter}.png')
|
| 168 |
+
else:
|
| 169 |
+
if self.opt['val']['suffix']:
|
| 170 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 171 |
+
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
| 172 |
+
else:
|
| 173 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 174 |
+
f'{img_name}_{self.opt["name"]}.png')
|
| 175 |
+
imwrite(sr_img, save_img_path)
|
| 176 |
+
|
| 177 |
+
if with_metrics:
|
| 178 |
+
# calculate metrics
|
| 179 |
+
for name, opt_ in self.opt['val']['metrics'].items():
|
| 180 |
+
metric_data = dict(img1=sr_img, img2=gt_img)
|
| 181 |
+
self.metric_results[name] += calculate_metric(metric_data, opt_)
|
| 182 |
+
pbar.update(1)
|
| 183 |
+
pbar.set_description(f'Test {img_name}')
|
| 184 |
+
pbar.close()
|
| 185 |
+
|
| 186 |
+
if with_metrics:
|
| 187 |
+
for metric in self.metric_results.keys():
|
| 188 |
+
self.metric_results[metric] /= (idx + 1)
|
| 189 |
+
|
| 190 |
+
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
| 194 |
+
log_str = f'Validation {dataset_name}\n'
|
| 195 |
+
for metric, value in self.metric_results.items():
|
| 196 |
+
log_str += f'\t # {metric}: {value:.4f}\n'
|
| 197 |
+
logger = get_root_logger()
|
| 198 |
+
logger.info(log_str)
|
| 199 |
+
if tb_logger:
|
| 200 |
+
for metric, value in self.metric_results.items():
|
| 201 |
+
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_current_visuals(self):
|
| 205 |
+
out_dict = OrderedDict()
|
| 206 |
+
out_dict['gt'] = self.gt.detach().cpu()
|
| 207 |
+
out_dict['result'] = self.output.detach().cpu()
|
| 208 |
+
return out_dict
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def save(self, epoch, current_iter):
|
| 212 |
+
if self.ema_decay > 0:
|
| 213 |
+
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
| 214 |
+
else:
|
| 215 |
+
self.save_network(self.net_g, 'net_g', current_iter)
|
| 216 |
+
self.save_training_state(epoch, current_iter)
|
basicsr/models/codeformer_joint_model.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from os import path as osp
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from basicsr.archs import build_network
|
| 8 |
+
from basicsr.losses import build_loss
|
| 9 |
+
from basicsr.metrics import calculate_metric
|
| 10 |
+
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
| 11 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from .sr_model import SRModel
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@MODEL_REGISTRY.register()
|
| 17 |
+
class CodeFormerJointModel(SRModel):
|
| 18 |
+
def feed_data(self, data):
|
| 19 |
+
self.gt = data['gt'].to(self.device)
|
| 20 |
+
self.input = data['in'].to(self.device)
|
| 21 |
+
self.input_large_de = data['in_large_de'].to(self.device)
|
| 22 |
+
self.b = self.gt.shape[0]
|
| 23 |
+
|
| 24 |
+
if 'latent_gt' in data:
|
| 25 |
+
self.idx_gt = data['latent_gt'].to(self.device)
|
| 26 |
+
self.idx_gt = self.idx_gt.view(self.b, -1)
|
| 27 |
+
else:
|
| 28 |
+
self.idx_gt = None
|
| 29 |
+
|
| 30 |
+
def init_training_settings(self):
|
| 31 |
+
logger = get_root_logger()
|
| 32 |
+
train_opt = self.opt['train']
|
| 33 |
+
|
| 34 |
+
self.ema_decay = train_opt.get('ema_decay', 0)
|
| 35 |
+
if self.ema_decay > 0:
|
| 36 |
+
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
| 37 |
+
# define network net_g with Exponential Moving Average (EMA)
|
| 38 |
+
# net_g_ema is used only for testing on one GPU and saving
|
| 39 |
+
# There is no need to wrap with DistributedDataParallel
|
| 40 |
+
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
| 41 |
+
# load pretrained model
|
| 42 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 43 |
+
if load_path is not None:
|
| 44 |
+
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
| 45 |
+
else:
|
| 46 |
+
self.model_ema(0) # copy net_g weight
|
| 47 |
+
self.net_g_ema.eval()
|
| 48 |
+
|
| 49 |
+
if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
|
| 50 |
+
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
| 51 |
+
self.hq_vqgan_fix.eval()
|
| 52 |
+
self.generate_idx_gt = True
|
| 53 |
+
for param in self.hq_vqgan_fix.parameters():
|
| 54 |
+
param.requires_grad = False
|
| 55 |
+
else:
|
| 56 |
+
self.generate_idx_gt = False
|
| 57 |
+
|
| 58 |
+
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
| 59 |
+
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
| 60 |
+
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
|
| 61 |
+
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
|
| 62 |
+
self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8)
|
| 63 |
+
|
| 64 |
+
# define network net_d
|
| 65 |
+
self.net_d = build_network(self.opt['network_d'])
|
| 66 |
+
self.net_d = self.model_to_device(self.net_d)
|
| 67 |
+
self.print_network(self.net_d)
|
| 68 |
+
|
| 69 |
+
# load pretrained models
|
| 70 |
+
load_path = self.opt['path'].get('pretrain_network_d', None)
|
| 71 |
+
if load_path is not None:
|
| 72 |
+
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
|
| 73 |
+
|
| 74 |
+
self.net_g.train()
|
| 75 |
+
self.net_d.train()
|
| 76 |
+
|
| 77 |
+
# define losses
|
| 78 |
+
if train_opt.get('pixel_opt'):
|
| 79 |
+
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
|
| 80 |
+
else:
|
| 81 |
+
self.cri_pix = None
|
| 82 |
+
|
| 83 |
+
if train_opt.get('perceptual_opt'):
|
| 84 |
+
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
|
| 85 |
+
else:
|
| 86 |
+
self.cri_perceptual = None
|
| 87 |
+
|
| 88 |
+
if train_opt.get('gan_opt'):
|
| 89 |
+
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
self.fix_generator = train_opt.get('fix_generator', True)
|
| 93 |
+
logger.info(f'fix_generator: {self.fix_generator}')
|
| 94 |
+
|
| 95 |
+
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
|
| 96 |
+
self.net_d_iters = train_opt.get('net_d_iters', 1)
|
| 97 |
+
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
|
| 98 |
+
|
| 99 |
+
# set up optimizers and schedulers
|
| 100 |
+
self.setup_optimizers()
|
| 101 |
+
self.setup_schedulers()
|
| 102 |
+
|
| 103 |
+
def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
|
| 104 |
+
recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
|
| 105 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 106 |
+
|
| 107 |
+
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
|
| 108 |
+
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
|
| 109 |
+
return d_weight
|
| 110 |
+
|
| 111 |
+
def setup_optimizers(self):
|
| 112 |
+
train_opt = self.opt['train']
|
| 113 |
+
# optimizer g
|
| 114 |
+
optim_params_g = []
|
| 115 |
+
for k, v in self.net_g.named_parameters():
|
| 116 |
+
if v.requires_grad:
|
| 117 |
+
optim_params_g.append(v)
|
| 118 |
+
else:
|
| 119 |
+
logger = get_root_logger()
|
| 120 |
+
logger.warning(f'Params {k} will not be optimized.')
|
| 121 |
+
optim_type = train_opt['optim_g'].pop('type')
|
| 122 |
+
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
|
| 123 |
+
self.optimizers.append(self.optimizer_g)
|
| 124 |
+
# optimizer d
|
| 125 |
+
optim_type = train_opt['optim_d'].pop('type')
|
| 126 |
+
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
|
| 127 |
+
self.optimizers.append(self.optimizer_d)
|
| 128 |
+
|
| 129 |
+
def gray_resize_for_identity(self, out, size=128):
|
| 130 |
+
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
|
| 131 |
+
out_gray = out_gray.unsqueeze(1)
|
| 132 |
+
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
|
| 133 |
+
return out_gray
|
| 134 |
+
|
| 135 |
+
def optimize_parameters(self, current_iter):
|
| 136 |
+
logger = get_root_logger()
|
| 137 |
+
# optimize net_g
|
| 138 |
+
for p in self.net_d.parameters():
|
| 139 |
+
p.requires_grad = False
|
| 140 |
+
|
| 141 |
+
self.optimizer_g.zero_grad()
|
| 142 |
+
|
| 143 |
+
if self.generate_idx_gt:
|
| 144 |
+
x = self.hq_vqgan_fix.encoder(self.gt)
|
| 145 |
+
output, _, quant_stats = self.hq_vqgan_fix.quantize(x)
|
| 146 |
+
min_encoding_indices = quant_stats['min_encoding_indices']
|
| 147 |
+
self.idx_gt = min_encoding_indices.view(self.b, -1)
|
| 148 |
+
|
| 149 |
+
if current_iter <= 40000: # small degradation
|
| 150 |
+
small_per_n = 1
|
| 151 |
+
w = 1
|
| 152 |
+
elif current_iter <= 80000: # small degradation
|
| 153 |
+
small_per_n = 1
|
| 154 |
+
w = 1.3
|
| 155 |
+
elif current_iter <= 120000: # large degradation
|
| 156 |
+
small_per_n = 120000
|
| 157 |
+
w = 0
|
| 158 |
+
else: # mixed degradation
|
| 159 |
+
small_per_n = 15
|
| 160 |
+
w = 1.3
|
| 161 |
+
|
| 162 |
+
if current_iter % small_per_n == 0:
|
| 163 |
+
self.output, logits, lq_feat = self.net_g(self.input, w=w, detach_16=True)
|
| 164 |
+
large_de = False
|
| 165 |
+
else:
|
| 166 |
+
logits, lq_feat = self.net_g(self.input_large_de, code_only=True)
|
| 167 |
+
large_de = True
|
| 168 |
+
|
| 169 |
+
if self.hq_feat_loss:
|
| 170 |
+
# quant_feats
|
| 171 |
+
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
|
| 172 |
+
|
| 173 |
+
l_g_total = 0
|
| 174 |
+
loss_dict = OrderedDict()
|
| 175 |
+
if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
|
| 176 |
+
# hq_feat_loss
|
| 177 |
+
if not 'transformer' in self.opt['network_g']['fix_modules']:
|
| 178 |
+
if self.hq_feat_loss: # codebook loss
|
| 179 |
+
l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
|
| 180 |
+
l_g_total += l_feat_encoder
|
| 181 |
+
loss_dict['l_feat_encoder'] = l_feat_encoder
|
| 182 |
+
|
| 183 |
+
# cross_entropy_loss
|
| 184 |
+
if self.cross_entropy_loss:
|
| 185 |
+
# b(hw)n -> bn(hw)
|
| 186 |
+
cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
|
| 187 |
+
l_g_total += cross_entropy_loss
|
| 188 |
+
loss_dict['cross_entropy_loss'] = cross_entropy_loss
|
| 189 |
+
|
| 190 |
+
# pixel loss
|
| 191 |
+
if not large_de: # when large degradation don't need image-level loss
|
| 192 |
+
if self.cri_pix:
|
| 193 |
+
l_g_pix = self.cri_pix(self.output, self.gt)
|
| 194 |
+
l_g_total += l_g_pix
|
| 195 |
+
loss_dict['l_g_pix'] = l_g_pix
|
| 196 |
+
|
| 197 |
+
# perceptual loss
|
| 198 |
+
if self.cri_perceptual:
|
| 199 |
+
l_g_percep = self.cri_perceptual(self.output, self.gt)
|
| 200 |
+
l_g_total += l_g_percep
|
| 201 |
+
loss_dict['l_g_percep'] = l_g_percep
|
| 202 |
+
|
| 203 |
+
# gan loss
|
| 204 |
+
if current_iter > self.net_d_start_iter:
|
| 205 |
+
fake_g_pred = self.net_d(self.output)
|
| 206 |
+
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
|
| 207 |
+
recon_loss = l_g_pix + l_g_percep
|
| 208 |
+
if not self.fix_generator:
|
| 209 |
+
last_layer = self.net_g.module.generator.blocks[-1].weight
|
| 210 |
+
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
|
| 211 |
+
else:
|
| 212 |
+
largest_fuse_size = self.opt['network_g']['connect_list'][-1]
|
| 213 |
+
last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight
|
| 214 |
+
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
|
| 215 |
+
|
| 216 |
+
d_weight *= self.scale_adaptive_gan_weight # 0.8
|
| 217 |
+
loss_dict['d_weight'] = d_weight
|
| 218 |
+
l_g_total += d_weight * l_g_gan
|
| 219 |
+
loss_dict['l_g_gan'] = d_weight * l_g_gan
|
| 220 |
+
|
| 221 |
+
l_g_total.backward()
|
| 222 |
+
self.optimizer_g.step()
|
| 223 |
+
|
| 224 |
+
if self.ema_decay > 0:
|
| 225 |
+
self.model_ema(decay=self.ema_decay)
|
| 226 |
+
|
| 227 |
+
# optimize net_d
|
| 228 |
+
if not large_de:
|
| 229 |
+
if current_iter > self.net_d_start_iter:
|
| 230 |
+
for p in self.net_d.parameters():
|
| 231 |
+
p.requires_grad = True
|
| 232 |
+
|
| 233 |
+
self.optimizer_d.zero_grad()
|
| 234 |
+
# real
|
| 235 |
+
real_d_pred = self.net_d(self.gt)
|
| 236 |
+
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
|
| 237 |
+
loss_dict['l_d_real'] = l_d_real
|
| 238 |
+
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
|
| 239 |
+
l_d_real.backward()
|
| 240 |
+
# fake
|
| 241 |
+
fake_d_pred = self.net_d(self.output.detach())
|
| 242 |
+
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
|
| 243 |
+
loss_dict['l_d_fake'] = l_d_fake
|
| 244 |
+
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
|
| 245 |
+
l_d_fake.backward()
|
| 246 |
+
|
| 247 |
+
self.optimizer_d.step()
|
| 248 |
+
|
| 249 |
+
self.log_dict = self.reduce_loss_dict(loss_dict)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def test(self):
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
if hasattr(self, 'net_g_ema'):
|
| 255 |
+
self.net_g_ema.eval()
|
| 256 |
+
self.output, _, _ = self.net_g_ema(self.input, w=1)
|
| 257 |
+
else:
|
| 258 |
+
logger = get_root_logger()
|
| 259 |
+
logger.warning('Do not have self.net_g_ema, use self.net_g.')
|
| 260 |
+
self.net_g.eval()
|
| 261 |
+
self.output, _, _ = self.net_g(self.input, w=1)
|
| 262 |
+
self.net_g.train()
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 266 |
+
if self.opt['rank'] == 0:
|
| 267 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 271 |
+
dataset_name = dataloader.dataset.opt['name']
|
| 272 |
+
with_metrics = self.opt['val'].get('metrics') is not None
|
| 273 |
+
if with_metrics:
|
| 274 |
+
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
| 275 |
+
pbar = tqdm(total=len(dataloader), unit='image')
|
| 276 |
+
|
| 277 |
+
for idx, val_data in enumerate(dataloader):
|
| 278 |
+
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
|
| 279 |
+
self.feed_data(val_data)
|
| 280 |
+
self.test()
|
| 281 |
+
|
| 282 |
+
visuals = self.get_current_visuals()
|
| 283 |
+
sr_img = tensor2img([visuals['result']])
|
| 284 |
+
if 'gt' in visuals:
|
| 285 |
+
gt_img = tensor2img([visuals['gt']])
|
| 286 |
+
del self.gt
|
| 287 |
+
|
| 288 |
+
# tentative for out of GPU memory
|
| 289 |
+
del self.lq
|
| 290 |
+
del self.output
|
| 291 |
+
torch.cuda.empty_cache()
|
| 292 |
+
|
| 293 |
+
if save_img:
|
| 294 |
+
if self.opt['is_train']:
|
| 295 |
+
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
|
| 296 |
+
f'{img_name}_{current_iter}.png')
|
| 297 |
+
else:
|
| 298 |
+
if self.opt['val']['suffix']:
|
| 299 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 300 |
+
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
| 301 |
+
else:
|
| 302 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 303 |
+
f'{img_name}_{self.opt["name"]}.png')
|
| 304 |
+
imwrite(sr_img, save_img_path)
|
| 305 |
+
|
| 306 |
+
if with_metrics:
|
| 307 |
+
# calculate metrics
|
| 308 |
+
for name, opt_ in self.opt['val']['metrics'].items():
|
| 309 |
+
metric_data = dict(img1=sr_img, img2=gt_img)
|
| 310 |
+
self.metric_results[name] += calculate_metric(metric_data, opt_)
|
| 311 |
+
pbar.update(1)
|
| 312 |
+
pbar.set_description(f'Test {img_name}')
|
| 313 |
+
pbar.close()
|
| 314 |
+
|
| 315 |
+
if with_metrics:
|
| 316 |
+
for metric in self.metric_results.keys():
|
| 317 |
+
self.metric_results[metric] /= (idx + 1)
|
| 318 |
+
|
| 319 |
+
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
| 323 |
+
log_str = f'Validation {dataset_name}\n'
|
| 324 |
+
for metric, value in self.metric_results.items():
|
| 325 |
+
log_str += f'\t # {metric}: {value:.4f}\n'
|
| 326 |
+
logger = get_root_logger()
|
| 327 |
+
logger.info(log_str)
|
| 328 |
+
if tb_logger:
|
| 329 |
+
for metric, value in self.metric_results.items():
|
| 330 |
+
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def get_current_visuals(self):
|
| 334 |
+
out_dict = OrderedDict()
|
| 335 |
+
out_dict['gt'] = self.gt.detach().cpu()
|
| 336 |
+
out_dict['result'] = self.output.detach().cpu()
|
| 337 |
+
return out_dict
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def save(self, epoch, current_iter):
|
| 341 |
+
if self.ema_decay > 0:
|
| 342 |
+
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
| 343 |
+
else:
|
| 344 |
+
self.save_network(self.net_g, 'net_g', current_iter)
|
| 345 |
+
self.save_network(self.net_d, 'net_d', current_iter)
|
| 346 |
+
self.save_training_state(epoch, current_iter)
|
basicsr/models/codeformer_model.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from os import path as osp
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
from basicsr.archs import build_network
|
| 7 |
+
from basicsr.losses import build_loss
|
| 8 |
+
from basicsr.metrics import calculate_metric
|
| 9 |
+
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
| 10 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from .sr_model import SRModel
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@MODEL_REGISTRY.register()
|
| 16 |
+
class CodeFormerModel(SRModel):
|
| 17 |
+
def feed_data(self, data):
|
| 18 |
+
self.gt = data['gt'].to(self.device)
|
| 19 |
+
self.input = data['in'].to(self.device)
|
| 20 |
+
self.b = self.gt.shape[0]
|
| 21 |
+
|
| 22 |
+
if 'latent_gt' in data:
|
| 23 |
+
self.idx_gt = data['latent_gt'].to(self.device)
|
| 24 |
+
self.idx_gt = self.idx_gt.view(self.b, -1)
|
| 25 |
+
else:
|
| 26 |
+
self.idx_gt = None
|
| 27 |
+
|
| 28 |
+
def init_training_settings(self):
|
| 29 |
+
logger = get_root_logger()
|
| 30 |
+
train_opt = self.opt['train']
|
| 31 |
+
|
| 32 |
+
self.ema_decay = train_opt.get('ema_decay', 0)
|
| 33 |
+
if self.ema_decay > 0:
|
| 34 |
+
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
| 35 |
+
# define network net_g with Exponential Moving Average (EMA)
|
| 36 |
+
# net_g_ema is used only for testing on one GPU and saving
|
| 37 |
+
# There is no need to wrap with DistributedDataParallel
|
| 38 |
+
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
| 39 |
+
# load pretrained model
|
| 40 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 41 |
+
if load_path is not None:
|
| 42 |
+
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
| 43 |
+
else:
|
| 44 |
+
self.model_ema(0) # copy net_g weight
|
| 45 |
+
self.net_g_ema.eval()
|
| 46 |
+
|
| 47 |
+
if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
|
| 48 |
+
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
| 49 |
+
self.hq_vqgan_fix.eval()
|
| 50 |
+
self.generate_idx_gt = True
|
| 51 |
+
for param in self.hq_vqgan_fix.parameters():
|
| 52 |
+
param.requires_grad = False
|
| 53 |
+
else:
|
| 54 |
+
self.generate_idx_gt = False
|
| 55 |
+
|
| 56 |
+
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
| 57 |
+
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
| 58 |
+
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
|
| 59 |
+
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
|
| 60 |
+
self.fidelity_weight = train_opt.get('fidelity_weight', 1.0)
|
| 61 |
+
self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
self.net_g.train()
|
| 65 |
+
# define network net_d
|
| 66 |
+
if self.fidelity_weight > 0:
|
| 67 |
+
self.net_d = build_network(self.opt['network_d'])
|
| 68 |
+
self.net_d = self.model_to_device(self.net_d)
|
| 69 |
+
self.print_network(self.net_d)
|
| 70 |
+
|
| 71 |
+
# load pretrained models
|
| 72 |
+
load_path = self.opt['path'].get('pretrain_network_d', None)
|
| 73 |
+
if load_path is not None:
|
| 74 |
+
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
|
| 75 |
+
|
| 76 |
+
self.net_d.train()
|
| 77 |
+
|
| 78 |
+
# define losses
|
| 79 |
+
if train_opt.get('pixel_opt'):
|
| 80 |
+
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
|
| 81 |
+
else:
|
| 82 |
+
self.cri_pix = None
|
| 83 |
+
|
| 84 |
+
if train_opt.get('perceptual_opt'):
|
| 85 |
+
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
|
| 86 |
+
else:
|
| 87 |
+
self.cri_perceptual = None
|
| 88 |
+
|
| 89 |
+
if train_opt.get('gan_opt'):
|
| 90 |
+
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
self.fix_generator = train_opt.get('fix_generator', True)
|
| 94 |
+
logger.info(f'fix_generator: {self.fix_generator}')
|
| 95 |
+
|
| 96 |
+
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
|
| 97 |
+
self.net_d_iters = train_opt.get('net_d_iters', 1)
|
| 98 |
+
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
|
| 99 |
+
|
| 100 |
+
# set up optimizers and schedulers
|
| 101 |
+
self.setup_optimizers()
|
| 102 |
+
self.setup_schedulers()
|
| 103 |
+
|
| 104 |
+
def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
|
| 105 |
+
recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
|
| 106 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 107 |
+
|
| 108 |
+
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
|
| 109 |
+
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
|
| 110 |
+
return d_weight
|
| 111 |
+
|
| 112 |
+
def setup_optimizers(self):
|
| 113 |
+
train_opt = self.opt['train']
|
| 114 |
+
# optimizer g
|
| 115 |
+
optim_params_g = []
|
| 116 |
+
for k, v in self.net_g.named_parameters():
|
| 117 |
+
if v.requires_grad:
|
| 118 |
+
optim_params_g.append(v)
|
| 119 |
+
else:
|
| 120 |
+
logger = get_root_logger()
|
| 121 |
+
logger.warning(f'Params {k} will not be optimized.')
|
| 122 |
+
optim_type = train_opt['optim_g'].pop('type')
|
| 123 |
+
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
|
| 124 |
+
self.optimizers.append(self.optimizer_g)
|
| 125 |
+
# optimizer d
|
| 126 |
+
if self.fidelity_weight > 0:
|
| 127 |
+
optim_type = train_opt['optim_d'].pop('type')
|
| 128 |
+
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
|
| 129 |
+
self.optimizers.append(self.optimizer_d)
|
| 130 |
+
|
| 131 |
+
def gray_resize_for_identity(self, out, size=128):
|
| 132 |
+
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
|
| 133 |
+
out_gray = out_gray.unsqueeze(1)
|
| 134 |
+
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
|
| 135 |
+
return out_gray
|
| 136 |
+
|
| 137 |
+
def optimize_parameters(self, current_iter):
|
| 138 |
+
logger = get_root_logger()
|
| 139 |
+
# optimize net_g
|
| 140 |
+
for p in self.net_d.parameters():
|
| 141 |
+
p.requires_grad = False
|
| 142 |
+
|
| 143 |
+
self.optimizer_g.zero_grad()
|
| 144 |
+
|
| 145 |
+
if self.generate_idx_gt:
|
| 146 |
+
x = self.hq_vqgan_fix.encoder(self.gt)
|
| 147 |
+
output, _, quant_stats = self.hq_vqgan_fix.quantize(x)
|
| 148 |
+
min_encoding_indices = quant_stats['min_encoding_indices']
|
| 149 |
+
self.idx_gt = min_encoding_indices.view(self.b, -1)
|
| 150 |
+
|
| 151 |
+
if self.fidelity_weight > 0:
|
| 152 |
+
self.output, logits, lq_feat = self.net_g(self.input, w=self.fidelity_weight, detach_16=True)
|
| 153 |
+
else:
|
| 154 |
+
logits, lq_feat = self.net_g(self.input, w=0, code_only=True)
|
| 155 |
+
|
| 156 |
+
if self.hq_feat_loss:
|
| 157 |
+
# quant_feats
|
| 158 |
+
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
|
| 159 |
+
|
| 160 |
+
l_g_total = 0
|
| 161 |
+
loss_dict = OrderedDict()
|
| 162 |
+
if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
|
| 163 |
+
# hq_feat_loss
|
| 164 |
+
if self.hq_feat_loss: # codebook loss
|
| 165 |
+
l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
|
| 166 |
+
l_g_total += l_feat_encoder
|
| 167 |
+
loss_dict['l_feat_encoder'] = l_feat_encoder
|
| 168 |
+
|
| 169 |
+
# cross_entropy_loss
|
| 170 |
+
if self.cross_entropy_loss:
|
| 171 |
+
# b(hw)n -> bn(hw)
|
| 172 |
+
cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
|
| 173 |
+
l_g_total += cross_entropy_loss
|
| 174 |
+
loss_dict['cross_entropy_loss'] = cross_entropy_loss
|
| 175 |
+
|
| 176 |
+
if self.fidelity_weight > 0: # when fidelity_weight == 0 don't need image-level loss
|
| 177 |
+
# pixel loss
|
| 178 |
+
if self.cri_pix:
|
| 179 |
+
l_g_pix = self.cri_pix(self.output, self.gt)
|
| 180 |
+
l_g_total += l_g_pix
|
| 181 |
+
loss_dict['l_g_pix'] = l_g_pix
|
| 182 |
+
|
| 183 |
+
# perceptual loss
|
| 184 |
+
if self.cri_perceptual:
|
| 185 |
+
l_g_percep = self.cri_perceptual(self.output, self.gt)
|
| 186 |
+
l_g_total += l_g_percep
|
| 187 |
+
loss_dict['l_g_percep'] = l_g_percep
|
| 188 |
+
|
| 189 |
+
# gan loss
|
| 190 |
+
if current_iter > self.net_d_start_iter:
|
| 191 |
+
fake_g_pred = self.net_d(self.output)
|
| 192 |
+
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
|
| 193 |
+
recon_loss = l_g_pix + l_g_percep
|
| 194 |
+
if not self.fix_generator:
|
| 195 |
+
last_layer = self.net_g.module.generator.blocks[-1].weight
|
| 196 |
+
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
|
| 197 |
+
else:
|
| 198 |
+
largest_fuse_size = self.opt['network_g']['connect_list'][-1]
|
| 199 |
+
last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight
|
| 200 |
+
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
|
| 201 |
+
|
| 202 |
+
d_weight *= self.scale_adaptive_gan_weight # 0.8
|
| 203 |
+
loss_dict['d_weight'] = d_weight
|
| 204 |
+
l_g_total += d_weight * l_g_gan
|
| 205 |
+
loss_dict['l_g_gan'] = d_weight * l_g_gan
|
| 206 |
+
|
| 207 |
+
l_g_total.backward()
|
| 208 |
+
self.optimizer_g.step()
|
| 209 |
+
|
| 210 |
+
if self.ema_decay > 0:
|
| 211 |
+
self.model_ema(decay=self.ema_decay)
|
| 212 |
+
|
| 213 |
+
# optimize net_d
|
| 214 |
+
if current_iter > self.net_d_start_iter and self.fidelity_weight > 0:
|
| 215 |
+
for p in self.net_d.parameters():
|
| 216 |
+
p.requires_grad = True
|
| 217 |
+
|
| 218 |
+
self.optimizer_d.zero_grad()
|
| 219 |
+
# real
|
| 220 |
+
real_d_pred = self.net_d(self.gt)
|
| 221 |
+
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
|
| 222 |
+
loss_dict['l_d_real'] = l_d_real
|
| 223 |
+
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
|
| 224 |
+
l_d_real.backward()
|
| 225 |
+
# fake
|
| 226 |
+
fake_d_pred = self.net_d(self.output.detach())
|
| 227 |
+
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
|
| 228 |
+
loss_dict['l_d_fake'] = l_d_fake
|
| 229 |
+
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
|
| 230 |
+
l_d_fake.backward()
|
| 231 |
+
|
| 232 |
+
self.optimizer_d.step()
|
| 233 |
+
|
| 234 |
+
self.log_dict = self.reduce_loss_dict(loss_dict)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def test(self):
|
| 238 |
+
with torch.no_grad():
|
| 239 |
+
if hasattr(self, 'net_g_ema'):
|
| 240 |
+
self.net_g_ema.eval()
|
| 241 |
+
self.output, _, _ = self.net_g_ema(self.input, w=self.fidelity_weight)
|
| 242 |
+
else:
|
| 243 |
+
logger = get_root_logger()
|
| 244 |
+
logger.warning('Do not have self.net_g_ema, use self.net_g.')
|
| 245 |
+
self.net_g.eval()
|
| 246 |
+
self.output, _, _ = self.net_g(self.input, w=self.fidelity_weight)
|
| 247 |
+
self.net_g.train()
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 251 |
+
if self.opt['rank'] == 0:
|
| 252 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 256 |
+
dataset_name = dataloader.dataset.opt['name']
|
| 257 |
+
with_metrics = self.opt['val'].get('metrics') is not None
|
| 258 |
+
if with_metrics:
|
| 259 |
+
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
| 260 |
+
pbar = tqdm(total=len(dataloader), unit='image')
|
| 261 |
+
|
| 262 |
+
for idx, val_data in enumerate(dataloader):
|
| 263 |
+
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
|
| 264 |
+
self.feed_data(val_data)
|
| 265 |
+
self.test()
|
| 266 |
+
|
| 267 |
+
visuals = self.get_current_visuals()
|
| 268 |
+
sr_img = tensor2img([visuals['result']])
|
| 269 |
+
if 'gt' in visuals:
|
| 270 |
+
gt_img = tensor2img([visuals['gt']])
|
| 271 |
+
del self.gt
|
| 272 |
+
|
| 273 |
+
# tentative for out of GPU memory
|
| 274 |
+
del self.lq
|
| 275 |
+
del self.output
|
| 276 |
+
torch.cuda.empty_cache()
|
| 277 |
+
|
| 278 |
+
if save_img:
|
| 279 |
+
if self.opt['is_train']:
|
| 280 |
+
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
|
| 281 |
+
f'{img_name}_{current_iter}.png')
|
| 282 |
+
else:
|
| 283 |
+
if self.opt['val']['suffix']:
|
| 284 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 285 |
+
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
| 286 |
+
else:
|
| 287 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 288 |
+
f'{img_name}_{self.opt["name"]}.png')
|
| 289 |
+
imwrite(sr_img, save_img_path)
|
| 290 |
+
|
| 291 |
+
if with_metrics:
|
| 292 |
+
# calculate metrics
|
| 293 |
+
for name, opt_ in self.opt['val']['metrics'].items():
|
| 294 |
+
metric_data = dict(img1=sr_img, img2=gt_img)
|
| 295 |
+
self.metric_results[name] += calculate_metric(metric_data, opt_)
|
| 296 |
+
pbar.update(1)
|
| 297 |
+
pbar.set_description(f'Test {img_name}')
|
| 298 |
+
pbar.close()
|
| 299 |
+
|
| 300 |
+
if with_metrics:
|
| 301 |
+
for metric in self.metric_results.keys():
|
| 302 |
+
self.metric_results[metric] /= (idx + 1)
|
| 303 |
+
|
| 304 |
+
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
| 308 |
+
log_str = f'Validation {dataset_name}\n'
|
| 309 |
+
for metric, value in self.metric_results.items():
|
| 310 |
+
log_str += f'\t # {metric}: {value:.4f}\n'
|
| 311 |
+
logger = get_root_logger()
|
| 312 |
+
logger.info(log_str)
|
| 313 |
+
if tb_logger:
|
| 314 |
+
for metric, value in self.metric_results.items():
|
| 315 |
+
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def get_current_visuals(self):
|
| 319 |
+
out_dict = OrderedDict()
|
| 320 |
+
out_dict['gt'] = self.gt.detach().cpu()
|
| 321 |
+
out_dict['result'] = self.output.detach().cpu()
|
| 322 |
+
return out_dict
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def save(self, epoch, current_iter):
|
| 326 |
+
if self.ema_decay > 0:
|
| 327 |
+
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
| 328 |
+
else:
|
| 329 |
+
self.save_network(self.net_g, 'net_g', current_iter)
|
| 330 |
+
if self.fidelity_weight > 0:
|
| 331 |
+
self.save_network(self.net_d, 'net_d', current_iter)
|
| 332 |
+
self.save_training_state(epoch, current_iter)
|
basicsr/models/sr_model.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from os import path as osp
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
from basicsr.archs import build_network
|
| 7 |
+
from basicsr.losses import build_loss
|
| 8 |
+
from basicsr.metrics import calculate_metric
|
| 9 |
+
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
| 10 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 11 |
+
from .base_model import BaseModel
|
| 12 |
+
|
| 13 |
+
@MODEL_REGISTRY.register()
|
| 14 |
+
class SRModel(BaseModel):
|
| 15 |
+
"""Base SR model for single image super-resolution."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, opt):
|
| 18 |
+
super(SRModel, self).__init__(opt)
|
| 19 |
+
|
| 20 |
+
# define network
|
| 21 |
+
self.net_g = build_network(opt['network_g'])
|
| 22 |
+
self.net_g = self.model_to_device(self.net_g)
|
| 23 |
+
self.print_network(self.net_g)
|
| 24 |
+
|
| 25 |
+
# load pretrained models
|
| 26 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 27 |
+
if load_path is not None:
|
| 28 |
+
param_key = self.opt['path'].get('param_key_g', 'params')
|
| 29 |
+
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
|
| 30 |
+
|
| 31 |
+
if self.is_train:
|
| 32 |
+
self.init_training_settings()
|
| 33 |
+
|
| 34 |
+
def init_training_settings(self):
|
| 35 |
+
self.net_g.train()
|
| 36 |
+
train_opt = self.opt['train']
|
| 37 |
+
|
| 38 |
+
self.ema_decay = train_opt.get('ema_decay', 0)
|
| 39 |
+
if self.ema_decay > 0:
|
| 40 |
+
logger = get_root_logger()
|
| 41 |
+
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
| 42 |
+
# define network net_g with Exponential Moving Average (EMA)
|
| 43 |
+
# net_g_ema is used only for testing on one GPU and saving
|
| 44 |
+
# There is no need to wrap with DistributedDataParallel
|
| 45 |
+
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
| 46 |
+
# load pretrained model
|
| 47 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 48 |
+
if load_path is not None:
|
| 49 |
+
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
| 50 |
+
else:
|
| 51 |
+
self.model_ema(0) # copy net_g weight
|
| 52 |
+
self.net_g_ema.eval()
|
| 53 |
+
|
| 54 |
+
# define losses
|
| 55 |
+
if train_opt.get('pixel_opt'):
|
| 56 |
+
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
|
| 57 |
+
else:
|
| 58 |
+
self.cri_pix = None
|
| 59 |
+
|
| 60 |
+
if train_opt.get('perceptual_opt'):
|
| 61 |
+
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
|
| 62 |
+
else:
|
| 63 |
+
self.cri_perceptual = None
|
| 64 |
+
|
| 65 |
+
if self.cri_pix is None and self.cri_perceptual is None:
|
| 66 |
+
raise ValueError('Both pixel and perceptual losses are None.')
|
| 67 |
+
|
| 68 |
+
# set up optimizers and schedulers
|
| 69 |
+
self.setup_optimizers()
|
| 70 |
+
self.setup_schedulers()
|
| 71 |
+
|
| 72 |
+
def setup_optimizers(self):
|
| 73 |
+
train_opt = self.opt['train']
|
| 74 |
+
optim_params = []
|
| 75 |
+
for k, v in self.net_g.named_parameters():
|
| 76 |
+
if v.requires_grad:
|
| 77 |
+
optim_params.append(v)
|
| 78 |
+
else:
|
| 79 |
+
logger = get_root_logger()
|
| 80 |
+
logger.warning(f'Params {k} will not be optimized.')
|
| 81 |
+
|
| 82 |
+
optim_type = train_opt['optim_g'].pop('type')
|
| 83 |
+
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
|
| 84 |
+
self.optimizers.append(self.optimizer_g)
|
| 85 |
+
|
| 86 |
+
def feed_data(self, data):
|
| 87 |
+
self.lq = data['lq'].to(self.device)
|
| 88 |
+
if 'gt' in data:
|
| 89 |
+
self.gt = data['gt'].to(self.device)
|
| 90 |
+
|
| 91 |
+
def optimize_parameters(self, current_iter):
|
| 92 |
+
self.optimizer_g.zero_grad()
|
| 93 |
+
self.output = self.net_g(self.lq)
|
| 94 |
+
|
| 95 |
+
l_total = 0
|
| 96 |
+
loss_dict = OrderedDict()
|
| 97 |
+
# pixel loss
|
| 98 |
+
if self.cri_pix:
|
| 99 |
+
l_pix = self.cri_pix(self.output, self.gt)
|
| 100 |
+
l_total += l_pix
|
| 101 |
+
loss_dict['l_pix'] = l_pix
|
| 102 |
+
# perceptual loss
|
| 103 |
+
if self.cri_perceptual:
|
| 104 |
+
l_percep, l_style = self.cri_perceptual(self.output, self.gt)
|
| 105 |
+
if l_percep is not None:
|
| 106 |
+
l_total += l_percep
|
| 107 |
+
loss_dict['l_percep'] = l_percep
|
| 108 |
+
if l_style is not None:
|
| 109 |
+
l_total += l_style
|
| 110 |
+
loss_dict['l_style'] = l_style
|
| 111 |
+
|
| 112 |
+
l_total.backward()
|
| 113 |
+
self.optimizer_g.step()
|
| 114 |
+
|
| 115 |
+
self.log_dict = self.reduce_loss_dict(loss_dict)
|
| 116 |
+
|
| 117 |
+
if self.ema_decay > 0:
|
| 118 |
+
self.model_ema(decay=self.ema_decay)
|
| 119 |
+
|
| 120 |
+
def test(self):
|
| 121 |
+
if hasattr(self, 'ema_decay'):
|
| 122 |
+
self.net_g_ema.eval()
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
self.output = self.net_g_ema(self.lq)
|
| 125 |
+
else:
|
| 126 |
+
self.net_g.eval()
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
self.output = self.net_g(self.lq)
|
| 129 |
+
self.net_g.train()
|
| 130 |
+
|
| 131 |
+
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 132 |
+
if self.opt['rank'] == 0:
|
| 133 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 134 |
+
|
| 135 |
+
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 136 |
+
dataset_name = dataloader.dataset.opt['name']
|
| 137 |
+
with_metrics = self.opt['val'].get('metrics') is not None
|
| 138 |
+
if with_metrics:
|
| 139 |
+
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
| 140 |
+
pbar = tqdm(total=len(dataloader), unit='image')
|
| 141 |
+
|
| 142 |
+
for idx, val_data in enumerate(dataloader):
|
| 143 |
+
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
|
| 144 |
+
self.feed_data(val_data)
|
| 145 |
+
self.test()
|
| 146 |
+
|
| 147 |
+
visuals = self.get_current_visuals()
|
| 148 |
+
sr_img = tensor2img([visuals['result']])
|
| 149 |
+
if 'gt' in visuals:
|
| 150 |
+
gt_img = tensor2img([visuals['gt']])
|
| 151 |
+
del self.gt
|
| 152 |
+
|
| 153 |
+
# tentative for out of GPU memory
|
| 154 |
+
del self.lq
|
| 155 |
+
del self.output
|
| 156 |
+
torch.cuda.empty_cache()
|
| 157 |
+
|
| 158 |
+
if save_img:
|
| 159 |
+
if self.opt['is_train']:
|
| 160 |
+
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
|
| 161 |
+
f'{img_name}_{current_iter}.png')
|
| 162 |
+
else:
|
| 163 |
+
if self.opt['val']['suffix']:
|
| 164 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 165 |
+
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
| 166 |
+
else:
|
| 167 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 168 |
+
f'{img_name}_{self.opt["name"]}.png')
|
| 169 |
+
imwrite(sr_img, save_img_path)
|
| 170 |
+
|
| 171 |
+
if with_metrics:
|
| 172 |
+
# calculate metrics
|
| 173 |
+
for name, opt_ in self.opt['val']['metrics'].items():
|
| 174 |
+
metric_data = dict(img1=sr_img, img2=gt_img)
|
| 175 |
+
self.metric_results[name] += calculate_metric(metric_data, opt_)
|
| 176 |
+
pbar.update(1)
|
| 177 |
+
pbar.set_description(f'Test {img_name}')
|
| 178 |
+
pbar.close()
|
| 179 |
+
|
| 180 |
+
if with_metrics:
|
| 181 |
+
for metric in self.metric_results.keys():
|
| 182 |
+
self.metric_results[metric] /= (idx + 1)
|
| 183 |
+
|
| 184 |
+
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
| 185 |
+
|
| 186 |
+
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
| 187 |
+
log_str = f'Validation {dataset_name}\n'
|
| 188 |
+
for metric, value in self.metric_results.items():
|
| 189 |
+
log_str += f'\t # {metric}: {value:.4f}\n'
|
| 190 |
+
logger = get_root_logger()
|
| 191 |
+
logger.info(log_str)
|
| 192 |
+
if tb_logger:
|
| 193 |
+
for metric, value in self.metric_results.items():
|
| 194 |
+
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
|
| 195 |
+
|
| 196 |
+
def get_current_visuals(self):
|
| 197 |
+
out_dict = OrderedDict()
|
| 198 |
+
out_dict['lq'] = self.lq.detach().cpu()
|
| 199 |
+
out_dict['result'] = self.output.detach().cpu()
|
| 200 |
+
if hasattr(self, 'gt'):
|
| 201 |
+
out_dict['gt'] = self.gt.detach().cpu()
|
| 202 |
+
return out_dict
|
| 203 |
+
|
| 204 |
+
def save(self, epoch, current_iter):
|
| 205 |
+
if hasattr(self, 'ema_decay'):
|
| 206 |
+
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
| 207 |
+
else:
|
| 208 |
+
self.save_network(self.net_g, 'net_g', current_iter)
|
| 209 |
+
self.save_training_state(epoch, current_iter)
|
basicsr/models/vqgan_model.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from os import path as osp
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
from basicsr.archs import build_network
|
| 7 |
+
from basicsr.losses import build_loss
|
| 8 |
+
from basicsr.metrics import calculate_metric
|
| 9 |
+
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
| 10 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from .sr_model import SRModel
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@MODEL_REGISTRY.register()
|
| 16 |
+
class VQGANModel(SRModel):
|
| 17 |
+
def feed_data(self, data):
|
| 18 |
+
self.gt = data['gt'].to(self.device)
|
| 19 |
+
self.b = self.gt.shape[0]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def init_training_settings(self):
|
| 23 |
+
logger = get_root_logger()
|
| 24 |
+
train_opt = self.opt['train']
|
| 25 |
+
|
| 26 |
+
self.ema_decay = train_opt.get('ema_decay', 0)
|
| 27 |
+
if self.ema_decay > 0:
|
| 28 |
+
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
| 29 |
+
# define network net_g with Exponential Moving Average (EMA)
|
| 30 |
+
# net_g_ema is used only for testing on one GPU and saving
|
| 31 |
+
# There is no need to wrap with DistributedDataParallel
|
| 32 |
+
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
| 33 |
+
# load pretrained model
|
| 34 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 35 |
+
if load_path is not None:
|
| 36 |
+
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
| 37 |
+
else:
|
| 38 |
+
self.model_ema(0) # copy net_g weight
|
| 39 |
+
self.net_g_ema.eval()
|
| 40 |
+
|
| 41 |
+
# define network net_d
|
| 42 |
+
self.net_d = build_network(self.opt['network_d'])
|
| 43 |
+
self.net_d = self.model_to_device(self.net_d)
|
| 44 |
+
self.print_network(self.net_d)
|
| 45 |
+
|
| 46 |
+
# load pretrained models
|
| 47 |
+
load_path = self.opt['path'].get('pretrain_network_d', None)
|
| 48 |
+
if load_path is not None:
|
| 49 |
+
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
|
| 50 |
+
|
| 51 |
+
self.net_g.train()
|
| 52 |
+
self.net_d.train()
|
| 53 |
+
|
| 54 |
+
# define losses
|
| 55 |
+
if train_opt.get('pixel_opt'):
|
| 56 |
+
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
|
| 57 |
+
else:
|
| 58 |
+
self.cri_pix = None
|
| 59 |
+
|
| 60 |
+
if train_opt.get('perceptual_opt'):
|
| 61 |
+
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
|
| 62 |
+
else:
|
| 63 |
+
self.cri_perceptual = None
|
| 64 |
+
|
| 65 |
+
if train_opt.get('gan_opt'):
|
| 66 |
+
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
|
| 67 |
+
|
| 68 |
+
if train_opt.get('codebook_opt'):
|
| 69 |
+
self.l_weight_codebook = train_opt['codebook_opt'].get('loss_weight', 1.0)
|
| 70 |
+
else:
|
| 71 |
+
self.l_weight_codebook = 1.0
|
| 72 |
+
|
| 73 |
+
self.vqgan_quantizer = self.opt['network_g']['quantizer']
|
| 74 |
+
logger.info(f'vqgan_quantizer: {self.vqgan_quantizer}')
|
| 75 |
+
|
| 76 |
+
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
|
| 77 |
+
self.net_d_iters = train_opt.get('net_d_iters', 1)
|
| 78 |
+
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
|
| 79 |
+
self.disc_weight = train_opt.get('disc_weight', 0.8)
|
| 80 |
+
|
| 81 |
+
# set up optimizers and schedulers
|
| 82 |
+
self.setup_optimizers()
|
| 83 |
+
self.setup_schedulers()
|
| 84 |
+
|
| 85 |
+
def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
|
| 86 |
+
recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
|
| 87 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 88 |
+
|
| 89 |
+
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
|
| 90 |
+
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
|
| 91 |
+
return d_weight
|
| 92 |
+
|
| 93 |
+
def adopt_weight(self, weight, global_step, threshold=0, value=0.):
|
| 94 |
+
if global_step < threshold:
|
| 95 |
+
weight = value
|
| 96 |
+
return weight
|
| 97 |
+
|
| 98 |
+
def setup_optimizers(self):
|
| 99 |
+
train_opt = self.opt['train']
|
| 100 |
+
# optimizer g
|
| 101 |
+
optim_params_g = []
|
| 102 |
+
for k, v in self.net_g.named_parameters():
|
| 103 |
+
if v.requires_grad:
|
| 104 |
+
optim_params_g.append(v)
|
| 105 |
+
else:
|
| 106 |
+
logger = get_root_logger()
|
| 107 |
+
logger.warning(f'Params {k} will not be optimized.')
|
| 108 |
+
optim_type = train_opt['optim_g'].pop('type')
|
| 109 |
+
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
|
| 110 |
+
self.optimizers.append(self.optimizer_g)
|
| 111 |
+
# optimizer d
|
| 112 |
+
optim_type = train_opt['optim_d'].pop('type')
|
| 113 |
+
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
|
| 114 |
+
self.optimizers.append(self.optimizer_d)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def optimize_parameters(self, current_iter):
|
| 118 |
+
logger = get_root_logger()
|
| 119 |
+
loss_dict = OrderedDict()
|
| 120 |
+
if self.opt['network_g']['quantizer'] == 'gumbel':
|
| 121 |
+
self.net_g.module.quantize.temperature = max(1/16, ((-1/160000) * current_iter) + 1)
|
| 122 |
+
if current_iter%1000 == 0:
|
| 123 |
+
logger.info(f'temperature: {self.net_g.module.quantize.temperature}')
|
| 124 |
+
|
| 125 |
+
# optimize net_g
|
| 126 |
+
for p in self.net_d.parameters():
|
| 127 |
+
p.requires_grad = False
|
| 128 |
+
|
| 129 |
+
self.optimizer_g.zero_grad()
|
| 130 |
+
self.output, l_codebook, quant_stats = self.net_g(self.gt)
|
| 131 |
+
|
| 132 |
+
l_codebook = l_codebook*self.l_weight_codebook
|
| 133 |
+
|
| 134 |
+
l_g_total = 0
|
| 135 |
+
if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
|
| 136 |
+
# pixel loss
|
| 137 |
+
if self.cri_pix:
|
| 138 |
+
l_g_pix = self.cri_pix(self.output, self.gt)
|
| 139 |
+
l_g_total += l_g_pix
|
| 140 |
+
loss_dict['l_g_pix'] = l_g_pix
|
| 141 |
+
# perceptual loss
|
| 142 |
+
if self.cri_perceptual:
|
| 143 |
+
l_g_percep = self.cri_perceptual(self.output, self.gt)
|
| 144 |
+
l_g_total += l_g_percep
|
| 145 |
+
loss_dict['l_g_percep'] = l_g_percep
|
| 146 |
+
|
| 147 |
+
# gan loss
|
| 148 |
+
if current_iter > self.net_d_start_iter:
|
| 149 |
+
# fake_g_pred = self.net_d(self.output_1024)
|
| 150 |
+
fake_g_pred = self.net_d(self.output)
|
| 151 |
+
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
|
| 152 |
+
recon_loss = l_g_total
|
| 153 |
+
last_layer = self.net_g.module.generator.blocks[-1].weight
|
| 154 |
+
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
|
| 155 |
+
d_weight *= self.adopt_weight(1, current_iter, self.net_d_start_iter)
|
| 156 |
+
d_weight *= self.disc_weight # tamming setting 0.8
|
| 157 |
+
l_g_total += d_weight * l_g_gan
|
| 158 |
+
loss_dict['l_g_gan'] = d_weight * l_g_gan
|
| 159 |
+
|
| 160 |
+
l_g_total += l_codebook
|
| 161 |
+
loss_dict['l_codebook'] = l_codebook
|
| 162 |
+
|
| 163 |
+
l_g_total.backward()
|
| 164 |
+
self.optimizer_g.step()
|
| 165 |
+
|
| 166 |
+
# optimize net_d
|
| 167 |
+
if current_iter > self.net_d_start_iter:
|
| 168 |
+
for p in self.net_d.parameters():
|
| 169 |
+
p.requires_grad = True
|
| 170 |
+
|
| 171 |
+
self.optimizer_d.zero_grad()
|
| 172 |
+
# real
|
| 173 |
+
real_d_pred = self.net_d(self.gt)
|
| 174 |
+
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
|
| 175 |
+
loss_dict['l_d_real'] = l_d_real
|
| 176 |
+
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
|
| 177 |
+
l_d_real.backward()
|
| 178 |
+
# fake
|
| 179 |
+
fake_d_pred = self.net_d(self.output.detach())
|
| 180 |
+
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
|
| 181 |
+
loss_dict['l_d_fake'] = l_d_fake
|
| 182 |
+
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
|
| 183 |
+
l_d_fake.backward()
|
| 184 |
+
self.optimizer_d.step()
|
| 185 |
+
|
| 186 |
+
self.log_dict = self.reduce_loss_dict(loss_dict)
|
| 187 |
+
|
| 188 |
+
if self.ema_decay > 0:
|
| 189 |
+
self.model_ema(decay=self.ema_decay)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def test(self):
|
| 193 |
+
with torch.no_grad():
|
| 194 |
+
if hasattr(self, 'net_g_ema'):
|
| 195 |
+
self.net_g_ema.eval()
|
| 196 |
+
self.output, _, _ = self.net_g_ema(self.gt)
|
| 197 |
+
else:
|
| 198 |
+
logger = get_root_logger()
|
| 199 |
+
logger.warning('Do not have self.net_g_ema, use self.net_g.')
|
| 200 |
+
self.net_g.eval()
|
| 201 |
+
self.output, _, _ = self.net_g(self.gt)
|
| 202 |
+
self.net_g.train()
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 206 |
+
if self.opt['rank'] == 0:
|
| 207 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 211 |
+
dataset_name = dataloader.dataset.opt['name']
|
| 212 |
+
with_metrics = self.opt['val'].get('metrics') is not None
|
| 213 |
+
if with_metrics:
|
| 214 |
+
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
| 215 |
+
pbar = tqdm(total=len(dataloader), unit='image')
|
| 216 |
+
|
| 217 |
+
for idx, val_data in enumerate(dataloader):
|
| 218 |
+
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
|
| 219 |
+
self.feed_data(val_data)
|
| 220 |
+
self.test()
|
| 221 |
+
|
| 222 |
+
visuals = self.get_current_visuals()
|
| 223 |
+
sr_img = tensor2img([visuals['result']])
|
| 224 |
+
if 'gt' in visuals:
|
| 225 |
+
gt_img = tensor2img([visuals['gt']])
|
| 226 |
+
del self.gt
|
| 227 |
+
|
| 228 |
+
# tentative for out of GPU memory
|
| 229 |
+
del self.lq
|
| 230 |
+
del self.output
|
| 231 |
+
torch.cuda.empty_cache()
|
| 232 |
+
|
| 233 |
+
if save_img:
|
| 234 |
+
if self.opt['is_train']:
|
| 235 |
+
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
|
| 236 |
+
f'{img_name}_{current_iter}.png')
|
| 237 |
+
else:
|
| 238 |
+
if self.opt['val']['suffix']:
|
| 239 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 240 |
+
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
| 241 |
+
else:
|
| 242 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 243 |
+
f'{img_name}_{self.opt["name"]}.png')
|
| 244 |
+
imwrite(sr_img, save_img_path)
|
| 245 |
+
|
| 246 |
+
if with_metrics:
|
| 247 |
+
# calculate metrics
|
| 248 |
+
for name, opt_ in self.opt['val']['metrics'].items():
|
| 249 |
+
metric_data = dict(img1=sr_img, img2=gt_img)
|
| 250 |
+
self.metric_results[name] += calculate_metric(metric_data, opt_)
|
| 251 |
+
pbar.update(1)
|
| 252 |
+
pbar.set_description(f'Test {img_name}')
|
| 253 |
+
pbar.close()
|
| 254 |
+
|
| 255 |
+
if with_metrics:
|
| 256 |
+
for metric in self.metric_results.keys():
|
| 257 |
+
self.metric_results[metric] /= (idx + 1)
|
| 258 |
+
|
| 259 |
+
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
| 263 |
+
log_str = f'Validation {dataset_name}\n'
|
| 264 |
+
for metric, value in self.metric_results.items():
|
| 265 |
+
log_str += f'\t # {metric}: {value:.4f}\n'
|
| 266 |
+
logger = get_root_logger()
|
| 267 |
+
logger.info(log_str)
|
| 268 |
+
if tb_logger:
|
| 269 |
+
for metric, value in self.metric_results.items():
|
| 270 |
+
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def get_current_visuals(self):
|
| 274 |
+
out_dict = OrderedDict()
|
| 275 |
+
out_dict['gt'] = self.gt.detach().cpu()
|
| 276 |
+
out_dict['result'] = self.output.detach().cpu()
|
| 277 |
+
return out_dict
|
| 278 |
+
|
| 279 |
+
def save(self, epoch, current_iter):
|
| 280 |
+
if self.ema_decay > 0:
|
| 281 |
+
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
| 282 |
+
else:
|
| 283 |
+
self.save_network(self.net_g, 'net_g', current_iter)
|
| 284 |
+
self.save_network(self.net_d, 'net_d', current_iter)
|
| 285 |
+
self.save_training_state(epoch, current_iter)
|
docs/history_changelog.md
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# History of Changelog
|
| 2 |
|
|
|
|
| 3 |
- **2023.04.09**: Add features of inpainting and colorization for cropped face images.
|
| 4 |
- **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
|
| 5 |
- **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
|
|
|
|
| 1 |
# History of Changelog
|
| 2 |
|
| 3 |
+
- **2023.04.19**: :whale: Training codes and config files are public available now.
|
| 4 |
- **2023.04.09**: Add features of inpainting and colorization for cropped face images.
|
| 5 |
- **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
|
| 6 |
- **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
|
docs/train.md
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# :milky_way: Training Procedures
|
| 2 |
+
[English](train.md) **|** [简体中文](train_CN.md)
|
| 3 |
+
## Preparing Dataset
|
| 4 |
+
|
| 5 |
+
- Download training dataset: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## Training
|
| 10 |
+
|
| 11 |
+
#### 👾 Stage I - VQGAN
|
| 12 |
+
- Training VQGAN:
|
| 13 |
+
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/VQGAN_512_ds32_nearest_stage1.yml --launcher pytorch
|
| 14 |
+
|
| 15 |
+
- After VQGAN training, you can pre-calculate code sequence for the training dataset to speed up the later training stages:
|
| 16 |
+
> python scripts/generate_latent_gt.py
|
| 17 |
+
|
| 18 |
+
- If you don't require training your own VQGAN, you can find pre-trained VQGAN and the corresponding code sequence in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
|
| 19 |
+
|
| 20 |
+
#### 🚀 Stage II - CodeFormer (w=0)
|
| 21 |
+
- Training Code Sequence Prediction Module:
|
| 22 |
+
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4322 basicsr/train.py -opt options/CodeFormer_stage2.yml --launcher pytorch
|
| 23 |
+
|
| 24 |
+
#### 🛸 Stage III - CodeFormer (w=1)
|
| 25 |
+
- Training Controllable Module:
|
| 26 |
+
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4323 basicsr/train.py -opt options/CodeFormer_stage3.yml --launcher pytorch
|
| 27 |
+
|
| 28 |
+
- Pre-trained CodeFormer can be found in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
:whale: The project was built using the framework [BasicSR](https://github.com/XPixelGroup/BasicSR). For detailed information on training, resuming, and other related topics, please refer to the documentation: https://github.com/XPixelGroup/BasicSR/blob/master/docs/TrainTest.md
|
docs/train_CN.md
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# :milky_way: 训练文档
|
| 2 |
+
[English](train.md) **|** [简体中文](train_CN.md)
|
| 3 |
+
|
| 4 |
+
## 准备数据集
|
| 5 |
+
- 下载训练数据集: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 训练
|
| 10 |
+
|
| 11 |
+
#### 👾 阶段 I - VQGAN
|
| 12 |
+
- 训练VQGAN:
|
| 13 |
+
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/VQGAN_512_ds32_nearest_stage1.yml --launcher pytorch
|
| 14 |
+
|
| 15 |
+
- 训练完VQGAN后,可以通过下面代码预先获得训练数据集的密码本序列,从而加速后面阶段的训练过程:
|
| 16 |
+
> python scripts/generate_latent_gt.py
|
| 17 |
+
|
| 18 |
+
- 如果你不需要训练自己的VQGAN,可以在Release v0.1.0文档中找到预训练的VQGAN和对应的密码本序列: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
|
| 19 |
+
|
| 20 |
+
#### 🚀 阶段 II - CodeFormer (w=0)
|
| 21 |
+
- 训练密码本训练预测模块:
|
| 22 |
+
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4322 basicsr/train.py -opt options/CodeFormer_stage2.yml --launcher pytorch
|
| 23 |
+
|
| 24 |
+
#### 🛸 阶段 III - CodeFormer (w=1)
|
| 25 |
+
- 训练可调模块:
|
| 26 |
+
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4323 basicsr/train.py -opt options/CodeFormer_stage3.yml --launcher pytorch
|
| 27 |
+
|
| 28 |
+
- 预训练CodeFormer模型可以在Releases v0.1.0文档里下载: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
:whale: 该项目是基于[BasicSR](https://github.com/XPixelGroup/BasicSR)框架搭建,有关训练、Resume等详细介绍可以查看文档: https://github.com/XPixelGroup/BasicSR/blob/master/docs/TrainTest_CN.md
|
options/CodeFormer_colorization.yml
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: CodeFormer_colorization
|
| 3 |
+
model_type: CodeFormerIdxModel
|
| 4 |
+
num_gpu: 8
|
| 5 |
+
manual_seed: 0
|
| 6 |
+
|
| 7 |
+
# dataset and data loader settings
|
| 8 |
+
datasets:
|
| 9 |
+
train:
|
| 10 |
+
name: FFHQ
|
| 11 |
+
type: FFHQBlindDataset
|
| 12 |
+
dataroot_gt: datasets/ffhq/ffhq_512
|
| 13 |
+
filename_tmpl: '{}'
|
| 14 |
+
io_backend:
|
| 15 |
+
type: disk
|
| 16 |
+
|
| 17 |
+
in_size: 512
|
| 18 |
+
gt_size: 512
|
| 19 |
+
mean: [0.5, 0.5, 0.5]
|
| 20 |
+
std: [0.5, 0.5, 0.5]
|
| 21 |
+
use_hflip: true
|
| 22 |
+
use_corrupt: true
|
| 23 |
+
latent_gt_path: ~
|
| 24 |
+
|
| 25 |
+
# large degradation in stageII
|
| 26 |
+
blur_kernel_size: 41
|
| 27 |
+
use_motion_kernel: false
|
| 28 |
+
motion_kernel_prob: 0.001
|
| 29 |
+
kernel_list: ['iso', 'aniso']
|
| 30 |
+
kernel_prob: [0.5, 0.5]
|
| 31 |
+
blur_sigma: [1, 15]
|
| 32 |
+
downsample_range: [4, 30]
|
| 33 |
+
noise_range: [0, 20]
|
| 34 |
+
jpeg_range: [30, 80]
|
| 35 |
+
|
| 36 |
+
# color jitter and gray
|
| 37 |
+
color_jitter_prob: 0.3
|
| 38 |
+
color_jitter_shift: 20
|
| 39 |
+
color_jitter_pt_prob: 0.3
|
| 40 |
+
gray_prob: 0.01
|
| 41 |
+
|
| 42 |
+
latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
| 43 |
+
|
| 44 |
+
# data loader
|
| 45 |
+
num_worker_per_gpu: 2
|
| 46 |
+
batch_size_per_gpu: 4
|
| 47 |
+
dataset_enlarge_ratio: 100
|
| 48 |
+
prefetch_mode: ~
|
| 49 |
+
|
| 50 |
+
# val:
|
| 51 |
+
# name: CelebA-HQ-512
|
| 52 |
+
# type: PairedImageDataset
|
| 53 |
+
# dataroot_lq: datasets/faces/validation/lq
|
| 54 |
+
# dataroot_gt: datasets/faces/validation/gt
|
| 55 |
+
# io_backend:
|
| 56 |
+
# type: disk
|
| 57 |
+
# mean: [0.5, 0.5, 0.5]
|
| 58 |
+
# std: [0.5, 0.5, 0.5]
|
| 59 |
+
# scale: 1
|
| 60 |
+
|
| 61 |
+
# network structures
|
| 62 |
+
network_g:
|
| 63 |
+
type: CodeFormer
|
| 64 |
+
dim_embd: 512
|
| 65 |
+
n_head: 8
|
| 66 |
+
n_layers: 9
|
| 67 |
+
codebook_size: 1024
|
| 68 |
+
connect_list: ['32', '64', '128', '256']
|
| 69 |
+
fix_modules: ['quantize','generator']
|
| 70 |
+
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
| 71 |
+
|
| 72 |
+
# path
|
| 73 |
+
path:
|
| 74 |
+
pretrain_network_g: ~
|
| 75 |
+
param_key_g: params_ema
|
| 76 |
+
strict_load_g: false
|
| 77 |
+
pretrain_network_d: ~
|
| 78 |
+
strict_load_d: true
|
| 79 |
+
resume_state: ~
|
| 80 |
+
|
| 81 |
+
# base_lr(4.5e-6)*bach_size(4)
|
| 82 |
+
train:
|
| 83 |
+
use_hq_feat_loss: true
|
| 84 |
+
feat_loss_weight: 1.0
|
| 85 |
+
cross_entropy_loss: true
|
| 86 |
+
entropy_loss_weight: 0.5
|
| 87 |
+
fidelity_weight: 0
|
| 88 |
+
|
| 89 |
+
optim_g:
|
| 90 |
+
type: Adam
|
| 91 |
+
lr: !!float 1e-4
|
| 92 |
+
weight_decay: 0
|
| 93 |
+
betas: [0.9, 0.99]
|
| 94 |
+
|
| 95 |
+
scheduler:
|
| 96 |
+
type: MultiStepLR
|
| 97 |
+
milestones: [400000, 450000]
|
| 98 |
+
gamma: 0.5
|
| 99 |
+
|
| 100 |
+
total_iter: 500000
|
| 101 |
+
|
| 102 |
+
warmup_iter: -1 # no warm up
|
| 103 |
+
ema_decay: 0.995
|
| 104 |
+
|
| 105 |
+
use_adaptive_weight: true
|
| 106 |
+
|
| 107 |
+
net_g_start_iter: 0
|
| 108 |
+
net_d_iters: 1
|
| 109 |
+
net_d_start_iter: 0
|
| 110 |
+
manual_seed: 0
|
| 111 |
+
|
| 112 |
+
# validation settings
|
| 113 |
+
val:
|
| 114 |
+
val_freq: !!float 5e10 # no validation
|
| 115 |
+
save_img: true
|
| 116 |
+
|
| 117 |
+
metrics:
|
| 118 |
+
psnr: # metric name, can be arbitrary
|
| 119 |
+
type: calculate_psnr
|
| 120 |
+
crop_border: 4
|
| 121 |
+
test_y_channel: false
|
| 122 |
+
|
| 123 |
+
# logging settings
|
| 124 |
+
logger:
|
| 125 |
+
print_freq: 100
|
| 126 |
+
save_checkpoint_freq: !!float 1e4
|
| 127 |
+
use_tb_logger: true
|
| 128 |
+
wandb:
|
| 129 |
+
project: ~
|
| 130 |
+
resume_id: ~
|
| 131 |
+
|
| 132 |
+
# dist training settings
|
| 133 |
+
dist_params:
|
| 134 |
+
backend: nccl
|
| 135 |
+
port: 29419
|
| 136 |
+
|
| 137 |
+
find_unused_parameters: true
|
options/CodeFormer_inpainting.yml
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: CodeFormer_inpainting
|
| 3 |
+
model_type: CodeFormerModel
|
| 4 |
+
num_gpu: 4
|
| 5 |
+
manual_seed: 0
|
| 6 |
+
|
| 7 |
+
# dataset and data loader settings
|
| 8 |
+
datasets:
|
| 9 |
+
train:
|
| 10 |
+
name: FFHQ
|
| 11 |
+
type: FFHQBlindDataset
|
| 12 |
+
dataroot_gt: datasets/ffhq/ffhq_512
|
| 13 |
+
filename_tmpl: '{}'
|
| 14 |
+
io_backend:
|
| 15 |
+
type: disk
|
| 16 |
+
|
| 17 |
+
in_size: 512
|
| 18 |
+
gt_size: 512
|
| 19 |
+
mean: [0.5, 0.5, 0.5]
|
| 20 |
+
std: [0.5, 0.5, 0.5]
|
| 21 |
+
use_hflip: true
|
| 22 |
+
use_corrupt: false
|
| 23 |
+
gen_inpaint_mask: true
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
| 27 |
+
|
| 28 |
+
# data loader
|
| 29 |
+
num_worker_per_gpu: 2
|
| 30 |
+
batch_size_per_gpu: 3
|
| 31 |
+
dataset_enlarge_ratio: 100
|
| 32 |
+
prefetch_mode: ~
|
| 33 |
+
|
| 34 |
+
# val:
|
| 35 |
+
# name: CelebA-HQ-512
|
| 36 |
+
# type: PairedImageDataset
|
| 37 |
+
# dataroot_lq: datasets/faces/validation/lq
|
| 38 |
+
# dataroot_gt: datasets/faces/validation/gt
|
| 39 |
+
# io_backend:
|
| 40 |
+
# type: disk
|
| 41 |
+
# mean: [0.5, 0.5, 0.5]
|
| 42 |
+
# std: [0.5, 0.5, 0.5]
|
| 43 |
+
# scale: 1
|
| 44 |
+
|
| 45 |
+
# network structures
|
| 46 |
+
network_g:
|
| 47 |
+
type: CodeFormer
|
| 48 |
+
dim_embd: 512
|
| 49 |
+
n_head: 8
|
| 50 |
+
n_layers: 9
|
| 51 |
+
codebook_size: 1024
|
| 52 |
+
connect_list: ['32', '64', '128']
|
| 53 |
+
fix_modules: ['quantize','generator']
|
| 54 |
+
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
| 55 |
+
|
| 56 |
+
network_d:
|
| 57 |
+
type: VQGANDiscriminator
|
| 58 |
+
nc: 3
|
| 59 |
+
ndf: 64
|
| 60 |
+
n_layers: 4
|
| 61 |
+
model_path: ~
|
| 62 |
+
|
| 63 |
+
# path
|
| 64 |
+
path:
|
| 65 |
+
pretrain_network_g: ~
|
| 66 |
+
param_key_g: params_ema
|
| 67 |
+
strict_load_g: true
|
| 68 |
+
pretrain_network_d: ~
|
| 69 |
+
strict_load_d: true
|
| 70 |
+
resume_state: ~
|
| 71 |
+
|
| 72 |
+
# base_lr(4.5e-6)*bach_size(4)
|
| 73 |
+
train:
|
| 74 |
+
use_hq_feat_loss: true
|
| 75 |
+
feat_loss_weight: 1.0
|
| 76 |
+
cross_entropy_loss: true
|
| 77 |
+
entropy_loss_weight: 0.5
|
| 78 |
+
scale_adaptive_gan_weight: 0.1
|
| 79 |
+
fidelity_weight: 1.0
|
| 80 |
+
|
| 81 |
+
optim_g:
|
| 82 |
+
type: Adam
|
| 83 |
+
lr: !!float 7e-5
|
| 84 |
+
weight_decay: 0
|
| 85 |
+
betas: [0.9, 0.99]
|
| 86 |
+
optim_d:
|
| 87 |
+
type: Adam
|
| 88 |
+
lr: !!float 7e-5
|
| 89 |
+
weight_decay: 0
|
| 90 |
+
betas: [0.9, 0.99]
|
| 91 |
+
|
| 92 |
+
scheduler:
|
| 93 |
+
type: MultiStepLR
|
| 94 |
+
milestones: [250000, 300000]
|
| 95 |
+
gamma: 0.5
|
| 96 |
+
|
| 97 |
+
total_iter: 300000
|
| 98 |
+
|
| 99 |
+
warmup_iter: -1 # no warm up
|
| 100 |
+
ema_decay: 0.997
|
| 101 |
+
|
| 102 |
+
pixel_opt:
|
| 103 |
+
type: L1Loss
|
| 104 |
+
loss_weight: 1.0
|
| 105 |
+
reduction: mean
|
| 106 |
+
|
| 107 |
+
perceptual_opt:
|
| 108 |
+
type: LPIPSLoss
|
| 109 |
+
loss_weight: 1.0
|
| 110 |
+
use_input_norm: true
|
| 111 |
+
range_norm: true
|
| 112 |
+
|
| 113 |
+
gan_opt:
|
| 114 |
+
type: GANLoss
|
| 115 |
+
gan_type: hinge
|
| 116 |
+
loss_weight: !!float 1.0 # adaptive_weighting
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
use_adaptive_weight: true
|
| 120 |
+
|
| 121 |
+
net_g_start_iter: 0
|
| 122 |
+
net_d_iters: 1
|
| 123 |
+
net_d_start_iter: 296001
|
| 124 |
+
manual_seed: 0
|
| 125 |
+
|
| 126 |
+
# validation settings
|
| 127 |
+
val:
|
| 128 |
+
val_freq: !!float 5e10 # no validation
|
| 129 |
+
save_img: true
|
| 130 |
+
|
| 131 |
+
metrics:
|
| 132 |
+
psnr: # metric name, can be arbitrary
|
| 133 |
+
type: calculate_psnr
|
| 134 |
+
crop_border: 4
|
| 135 |
+
test_y_channel: false
|
| 136 |
+
|
| 137 |
+
# logging settings
|
| 138 |
+
logger:
|
| 139 |
+
print_freq: 100
|
| 140 |
+
save_checkpoint_freq: !!float 1e4
|
| 141 |
+
use_tb_logger: true
|
| 142 |
+
wandb:
|
| 143 |
+
project: ~
|
| 144 |
+
resume_id: ~
|
| 145 |
+
|
| 146 |
+
# dist training settings
|
| 147 |
+
dist_params:
|
| 148 |
+
backend: nccl
|
| 149 |
+
port: 29420
|
| 150 |
+
|
| 151 |
+
find_unused_parameters: true
|
options/CodeFormer_stage2.yml
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: CodeFormer_stage2
|
| 3 |
+
model_type: CodeFormerIdxModel
|
| 4 |
+
num_gpu: 8
|
| 5 |
+
manual_seed: 0
|
| 6 |
+
|
| 7 |
+
# dataset and data loader settings
|
| 8 |
+
datasets:
|
| 9 |
+
train:
|
| 10 |
+
name: FFHQ
|
| 11 |
+
type: FFHQBlindDataset
|
| 12 |
+
dataroot_gt: datasets/ffhq/ffhq_512
|
| 13 |
+
filename_tmpl: '{}'
|
| 14 |
+
io_backend:
|
| 15 |
+
type: disk
|
| 16 |
+
|
| 17 |
+
in_size: 512
|
| 18 |
+
gt_size: 512
|
| 19 |
+
mean: [0.5, 0.5, 0.5]
|
| 20 |
+
std: [0.5, 0.5, 0.5]
|
| 21 |
+
use_hflip: true
|
| 22 |
+
use_corrupt: true
|
| 23 |
+
latent_gt_path: ~
|
| 24 |
+
|
| 25 |
+
# large degradation in stageII
|
| 26 |
+
blur_kernel_size: 41
|
| 27 |
+
use_motion_kernel: false
|
| 28 |
+
motion_kernel_prob: 0.001
|
| 29 |
+
kernel_list: ['iso', 'aniso']
|
| 30 |
+
kernel_prob: [0.5, 0.5]
|
| 31 |
+
blur_sigma: [1, 15]
|
| 32 |
+
downsample_range: [4, 30]
|
| 33 |
+
noise_range: [0, 20]
|
| 34 |
+
jpeg_range: [30, 80]
|
| 35 |
+
|
| 36 |
+
latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
| 37 |
+
|
| 38 |
+
# data loader
|
| 39 |
+
num_worker_per_gpu: 2
|
| 40 |
+
batch_size_per_gpu: 4
|
| 41 |
+
dataset_enlarge_ratio: 100
|
| 42 |
+
prefetch_mode: ~
|
| 43 |
+
|
| 44 |
+
# val:
|
| 45 |
+
# name: CelebA-HQ-512
|
| 46 |
+
# type: PairedImageDataset
|
| 47 |
+
# dataroot_lq: datasets/faces/validation/lq
|
| 48 |
+
# dataroot_gt: datasets/faces/validation/gt
|
| 49 |
+
# io_backend:
|
| 50 |
+
# type: disk
|
| 51 |
+
# mean: [0.5, 0.5, 0.5]
|
| 52 |
+
# std: [0.5, 0.5, 0.5]
|
| 53 |
+
# scale: 1
|
| 54 |
+
|
| 55 |
+
# network structures
|
| 56 |
+
network_g:
|
| 57 |
+
type: CodeFormer
|
| 58 |
+
dim_embd: 512
|
| 59 |
+
n_head: 8
|
| 60 |
+
n_layers: 9
|
| 61 |
+
codebook_size: 1024
|
| 62 |
+
connect_list: ['32', '64', '128', '256']
|
| 63 |
+
fix_modules: ['quantize','generator']
|
| 64 |
+
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
| 65 |
+
|
| 66 |
+
# path
|
| 67 |
+
path:
|
| 68 |
+
pretrain_network_g: ~
|
| 69 |
+
param_key_g: params_ema
|
| 70 |
+
strict_load_g: false
|
| 71 |
+
pretrain_network_d: ~
|
| 72 |
+
strict_load_d: true
|
| 73 |
+
resume_state: ~
|
| 74 |
+
|
| 75 |
+
# base_lr(4.5e-6)*bach_size(4)
|
| 76 |
+
train:
|
| 77 |
+
use_hq_feat_loss: true
|
| 78 |
+
feat_loss_weight: 1.0
|
| 79 |
+
cross_entropy_loss: true
|
| 80 |
+
entropy_loss_weight: 0.5
|
| 81 |
+
fidelity_weight: 0
|
| 82 |
+
|
| 83 |
+
optim_g:
|
| 84 |
+
type: Adam
|
| 85 |
+
lr: !!float 1e-4
|
| 86 |
+
weight_decay: 0
|
| 87 |
+
betas: [0.9, 0.99]
|
| 88 |
+
|
| 89 |
+
scheduler:
|
| 90 |
+
type: MultiStepLR
|
| 91 |
+
milestones: [400000, 450000]
|
| 92 |
+
gamma: 0.5
|
| 93 |
+
|
| 94 |
+
# scheduler:
|
| 95 |
+
# type: CosineAnnealingRestartLR
|
| 96 |
+
# periods: [500000]
|
| 97 |
+
# restart_weights: [1]
|
| 98 |
+
# eta_min: !!float 2e-5 # no lr reduce in official vqgan code
|
| 99 |
+
|
| 100 |
+
total_iter: 500000
|
| 101 |
+
|
| 102 |
+
warmup_iter: -1 # no warm up
|
| 103 |
+
ema_decay: 0.995
|
| 104 |
+
|
| 105 |
+
use_adaptive_weight: true
|
| 106 |
+
|
| 107 |
+
net_g_start_iter: 0
|
| 108 |
+
net_d_iters: 1
|
| 109 |
+
net_d_start_iter: 0
|
| 110 |
+
manual_seed: 0
|
| 111 |
+
|
| 112 |
+
# validation settings
|
| 113 |
+
val:
|
| 114 |
+
val_freq: !!float 5e10 # no validation
|
| 115 |
+
save_img: true
|
| 116 |
+
|
| 117 |
+
metrics:
|
| 118 |
+
psnr: # metric name, can be arbitrary
|
| 119 |
+
type: calculate_psnr
|
| 120 |
+
crop_border: 4
|
| 121 |
+
test_y_channel: false
|
| 122 |
+
|
| 123 |
+
# logging settings
|
| 124 |
+
logger:
|
| 125 |
+
print_freq: 100
|
| 126 |
+
save_checkpoint_freq: !!float 1e4
|
| 127 |
+
use_tb_logger: true
|
| 128 |
+
wandb:
|
| 129 |
+
project: ~
|
| 130 |
+
resume_id: ~
|
| 131 |
+
|
| 132 |
+
# dist training settings
|
| 133 |
+
dist_params:
|
| 134 |
+
backend: nccl
|
| 135 |
+
port: 29412
|
| 136 |
+
|
| 137 |
+
find_unused_parameters: true
|
options/CodeFormer_stage3.yml
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: CodeFormer_stage3
|
| 3 |
+
model_type: CodeFormerJointModel
|
| 4 |
+
num_gpu: 8
|
| 5 |
+
manual_seed: 0
|
| 6 |
+
|
| 7 |
+
# dataset and data loader settings
|
| 8 |
+
datasets:
|
| 9 |
+
train:
|
| 10 |
+
name: FFHQ
|
| 11 |
+
type: FFHQBlindJointDataset
|
| 12 |
+
dataroot_gt: datasets/ffhq/ffhq_512
|
| 13 |
+
filename_tmpl: '{}'
|
| 14 |
+
io_backend:
|
| 15 |
+
type: disk
|
| 16 |
+
|
| 17 |
+
in_size: 512
|
| 18 |
+
gt_size: 512
|
| 19 |
+
mean: [0.5, 0.5, 0.5]
|
| 20 |
+
std: [0.5, 0.5, 0.5]
|
| 21 |
+
use_hflip: true
|
| 22 |
+
use_corrupt: true
|
| 23 |
+
latent_gt_path: ~
|
| 24 |
+
|
| 25 |
+
blur_kernel_size: 41
|
| 26 |
+
use_motion_kernel: false
|
| 27 |
+
motion_kernel_prob: 0.001
|
| 28 |
+
kernel_list: ['iso', 'aniso']
|
| 29 |
+
kernel_prob: [0.5, 0.5]
|
| 30 |
+
# small degradation in stageIII
|
| 31 |
+
blur_sigma: [0.1, 10]
|
| 32 |
+
downsample_range: [1, 12]
|
| 33 |
+
noise_range: [0, 15]
|
| 34 |
+
jpeg_range: [60, 100]
|
| 35 |
+
# large degradation in stageII
|
| 36 |
+
blur_sigma_large: [1, 15]
|
| 37 |
+
downsample_range_large: [4, 30]
|
| 38 |
+
noise_range_large: [0, 20]
|
| 39 |
+
jpeg_range_large: [30, 80]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
| 43 |
+
|
| 44 |
+
# data loader
|
| 45 |
+
num_worker_per_gpu: 1
|
| 46 |
+
batch_size_per_gpu: 3
|
| 47 |
+
dataset_enlarge_ratio: 100
|
| 48 |
+
prefetch_mode: ~
|
| 49 |
+
|
| 50 |
+
# val:
|
| 51 |
+
# name: CelebA-HQ-512
|
| 52 |
+
# type: PairedImageDataset
|
| 53 |
+
# dataroot_lq: datasets/faces/validation/lq
|
| 54 |
+
# dataroot_gt: datasets/faces/validation/gt
|
| 55 |
+
# io_backend:
|
| 56 |
+
# type: disk
|
| 57 |
+
# mean: [0.5, 0.5, 0.5]
|
| 58 |
+
# std: [0.5, 0.5, 0.5]
|
| 59 |
+
# scale: 1
|
| 60 |
+
|
| 61 |
+
# network structures
|
| 62 |
+
network_g:
|
| 63 |
+
type: CodeFormer
|
| 64 |
+
dim_embd: 512
|
| 65 |
+
n_head: 8
|
| 66 |
+
n_layers: 9
|
| 67 |
+
codebook_size: 1024
|
| 68 |
+
connect_list: ['32', '64', '128', '256']
|
| 69 |
+
fix_modules: ['quantize','generator']
|
| 70 |
+
|
| 71 |
+
network_d:
|
| 72 |
+
type: VQGANDiscriminator
|
| 73 |
+
nc: 3
|
| 74 |
+
ndf: 64
|
| 75 |
+
n_layers: 4
|
| 76 |
+
|
| 77 |
+
# path
|
| 78 |
+
path:
|
| 79 |
+
pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
|
| 80 |
+
param_key_g: params_ema
|
| 81 |
+
strict_load_g: true
|
| 82 |
+
pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
|
| 83 |
+
resume_state: ~
|
| 84 |
+
|
| 85 |
+
# base_lr(4.5e-6)*bach_size(4)
|
| 86 |
+
train:
|
| 87 |
+
use_hq_feat_loss: true
|
| 88 |
+
feat_loss_weight: 1.0
|
| 89 |
+
cross_entropy_loss: true
|
| 90 |
+
entropy_loss_weight: 0.5
|
| 91 |
+
scale_adaptive_gan_weight: 0.1
|
| 92 |
+
|
| 93 |
+
optim_g:
|
| 94 |
+
type: Adam
|
| 95 |
+
lr: !!float 5e-5
|
| 96 |
+
weight_decay: 0
|
| 97 |
+
betas: [0.9, 0.99]
|
| 98 |
+
optim_d:
|
| 99 |
+
type: Adam
|
| 100 |
+
lr: !!float 5e-5
|
| 101 |
+
weight_decay: 0
|
| 102 |
+
betas: [0.9, 0.99]
|
| 103 |
+
|
| 104 |
+
scheduler:
|
| 105 |
+
type: CosineAnnealingRestartLR
|
| 106 |
+
periods: [150000]
|
| 107 |
+
restart_weights: [1]
|
| 108 |
+
eta_min: !!float 2e-5
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
total_iter: 150000
|
| 112 |
+
|
| 113 |
+
warmup_iter: -1 # no warm up
|
| 114 |
+
ema_decay: 0.997
|
| 115 |
+
|
| 116 |
+
pixel_opt:
|
| 117 |
+
type: L1Loss
|
| 118 |
+
loss_weight: 1.0
|
| 119 |
+
reduction: mean
|
| 120 |
+
|
| 121 |
+
perceptual_opt:
|
| 122 |
+
type: LPIPSLoss
|
| 123 |
+
loss_weight: 1.0
|
| 124 |
+
use_input_norm: true
|
| 125 |
+
range_norm: true
|
| 126 |
+
|
| 127 |
+
gan_opt:
|
| 128 |
+
type: GANLoss
|
| 129 |
+
gan_type: hinge
|
| 130 |
+
loss_weight: !!float 1.0 # adaptive_weighting
|
| 131 |
+
|
| 132 |
+
use_adaptive_weight: true
|
| 133 |
+
|
| 134 |
+
net_g_start_iter: 0
|
| 135 |
+
net_d_iters: 1
|
| 136 |
+
net_d_start_iter: 5001
|
| 137 |
+
manual_seed: 0
|
| 138 |
+
|
| 139 |
+
# validation settings
|
| 140 |
+
val:
|
| 141 |
+
val_freq: !!float 5e10 # no validation
|
| 142 |
+
save_img: true
|
| 143 |
+
|
| 144 |
+
metrics:
|
| 145 |
+
psnr: # metric name, can be arbitrary
|
| 146 |
+
type: calculate_psnr
|
| 147 |
+
crop_border: 4
|
| 148 |
+
test_y_channel: false
|
| 149 |
+
|
| 150 |
+
# logging settings
|
| 151 |
+
logger:
|
| 152 |
+
print_freq: 100
|
| 153 |
+
save_checkpoint_freq: !!float 5e3
|
| 154 |
+
use_tb_logger: true
|
| 155 |
+
wandb:
|
| 156 |
+
project: ~
|
| 157 |
+
resume_id: ~
|
| 158 |
+
|
| 159 |
+
# dist training settings
|
| 160 |
+
dist_params:
|
| 161 |
+
backend: nccl
|
| 162 |
+
port: 29413
|
| 163 |
+
|
| 164 |
+
find_unused_parameters: true
|
options/VQGAN_512_ds32_nearest_stage1.yml
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: VQGAN-512-ds32-nearest-stage1
|
| 3 |
+
model_type: VQGANModel
|
| 4 |
+
num_gpu: 8
|
| 5 |
+
manual_seed: 0
|
| 6 |
+
|
| 7 |
+
# dataset and data loader settings
|
| 8 |
+
datasets:
|
| 9 |
+
train:
|
| 10 |
+
name: FFHQ
|
| 11 |
+
type: FFHQBlindDataset
|
| 12 |
+
dataroot_gt: datasets/ffhq/ffhq_512
|
| 13 |
+
filename_tmpl: '{}'
|
| 14 |
+
io_backend:
|
| 15 |
+
type: disk
|
| 16 |
+
|
| 17 |
+
in_size: 512
|
| 18 |
+
gt_size: 512
|
| 19 |
+
mean: [0.5, 0.5, 0.5]
|
| 20 |
+
std: [0.5, 0.5, 0.5]
|
| 21 |
+
use_hflip: true
|
| 22 |
+
use_corrupt: false # for VQGAN
|
| 23 |
+
|
| 24 |
+
# data loader
|
| 25 |
+
num_worker_per_gpu: 2
|
| 26 |
+
batch_size_per_gpu: 4
|
| 27 |
+
dataset_enlarge_ratio: 100
|
| 28 |
+
|
| 29 |
+
prefetch_mode: cpu
|
| 30 |
+
num_prefetch_queue: 4
|
| 31 |
+
|
| 32 |
+
# val:
|
| 33 |
+
# name: CelebA-HQ-512
|
| 34 |
+
# type: PairedImageDataset
|
| 35 |
+
# dataroot_lq: datasets/faces/validation/gt
|
| 36 |
+
# dataroot_gt: datasets/faces/validation/gt
|
| 37 |
+
# io_backend:
|
| 38 |
+
# type: disk
|
| 39 |
+
# mean: [0.5, 0.5, 0.5]
|
| 40 |
+
# std: [0.5, 0.5, 0.5]
|
| 41 |
+
# scale: 1
|
| 42 |
+
|
| 43 |
+
# network structures
|
| 44 |
+
network_g:
|
| 45 |
+
type: VQAutoEncoder
|
| 46 |
+
img_size: 512
|
| 47 |
+
nf: 64
|
| 48 |
+
ch_mult: [1, 2, 2, 4, 4, 8]
|
| 49 |
+
quantizer: 'nearest'
|
| 50 |
+
codebook_size: 1024
|
| 51 |
+
|
| 52 |
+
network_d:
|
| 53 |
+
type: VQGANDiscriminator
|
| 54 |
+
nc: 3
|
| 55 |
+
ndf: 64
|
| 56 |
+
|
| 57 |
+
# path
|
| 58 |
+
path:
|
| 59 |
+
pretrain_network_g: ~
|
| 60 |
+
param_key_g: params_ema
|
| 61 |
+
strict_load_g: true
|
| 62 |
+
pretrain_network_d: ~
|
| 63 |
+
strict_load_d: true
|
| 64 |
+
resume_state: ~
|
| 65 |
+
|
| 66 |
+
# base_lr(4.5e-6)*bach_size(4)
|
| 67 |
+
train:
|
| 68 |
+
optim_g:
|
| 69 |
+
type: Adam
|
| 70 |
+
lr: !!float 7e-5
|
| 71 |
+
weight_decay: 0
|
| 72 |
+
betas: [0.9, 0.99]
|
| 73 |
+
optim_d:
|
| 74 |
+
type: Adam
|
| 75 |
+
lr: !!float 7e-5
|
| 76 |
+
weight_decay: 0
|
| 77 |
+
betas: [0.9, 0.99]
|
| 78 |
+
|
| 79 |
+
scheduler:
|
| 80 |
+
type: CosineAnnealingRestartLR
|
| 81 |
+
periods: [1600000]
|
| 82 |
+
restart_weights: [1]
|
| 83 |
+
eta_min: !!float 6e-5 # no lr reduce in official vqgan code
|
| 84 |
+
|
| 85 |
+
total_iter: 1600000
|
| 86 |
+
|
| 87 |
+
warmup_iter: -1 # no warm up
|
| 88 |
+
ema_decay: 0.995 # GFPGAN: 0.5**(32 / (10 * 1000) == 0.998; Unleashing: 0.995
|
| 89 |
+
|
| 90 |
+
pixel_opt:
|
| 91 |
+
type: L1Loss
|
| 92 |
+
loss_weight: 1.0
|
| 93 |
+
reduction: mean
|
| 94 |
+
|
| 95 |
+
perceptual_opt:
|
| 96 |
+
type: LPIPSLoss
|
| 97 |
+
loss_weight: 1.0
|
| 98 |
+
use_input_norm: true
|
| 99 |
+
range_norm: true
|
| 100 |
+
|
| 101 |
+
gan_opt:
|
| 102 |
+
type: GANLoss
|
| 103 |
+
gan_type: hinge
|
| 104 |
+
loss_weight: !!float 1.0 # adaptive_weighting
|
| 105 |
+
|
| 106 |
+
net_g_start_iter: 0
|
| 107 |
+
net_d_iters: 1
|
| 108 |
+
net_d_start_iter: 30001
|
| 109 |
+
manual_seed: 0
|
| 110 |
+
|
| 111 |
+
# validation settings
|
| 112 |
+
val:
|
| 113 |
+
val_freq: !!float 5e10 # no validation
|
| 114 |
+
save_img: true
|
| 115 |
+
|
| 116 |
+
metrics:
|
| 117 |
+
psnr: # metric name, can be arbitrary
|
| 118 |
+
type: calculate_psnr
|
| 119 |
+
crop_border: 4
|
| 120 |
+
test_y_channel: false
|
| 121 |
+
|
| 122 |
+
# logging settings
|
| 123 |
+
logger:
|
| 124 |
+
print_freq: 100
|
| 125 |
+
save_checkpoint_freq: !!float 1e4
|
| 126 |
+
use_tb_logger: true
|
| 127 |
+
wandb:
|
| 128 |
+
project: ~
|
| 129 |
+
resume_id: ~
|
| 130 |
+
|
| 131 |
+
# dist training settings
|
| 132 |
+
dist_params:
|
| 133 |
+
backend: nccl
|
| 134 |
+
port: 29411
|
| 135 |
+
|
| 136 |
+
find_unused_parameters: true
|
scripts/generate_latent_gt.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import glob
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
from torchvision.transforms.functional import normalize
|
| 8 |
+
from basicsr.utils import imwrite, img2tensor, tensor2img
|
| 9 |
+
|
| 10 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 11 |
+
|
| 12 |
+
if __name__ == '__main__':
|
| 13 |
+
parser = argparse.ArgumentParser()
|
| 14 |
+
parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512')
|
| 15 |
+
parser.add_argument('-o', '--save_root', type=str, default='./experiments/pretrained_models/vqgan')
|
| 16 |
+
parser.add_argument('--codebook_size', type=int, default=1024)
|
| 17 |
+
parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth')
|
| 18 |
+
args = parser.parse_args()
|
| 19 |
+
|
| 20 |
+
if args.save_root.endswith('/'): # solve when path ends with /
|
| 21 |
+
args.save_root = args.save_root[:-1]
|
| 22 |
+
dir_name = os.path.abspath(args.save_root)
|
| 23 |
+
os.makedirs(dir_name, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 26 |
+
test_path = args.test_path
|
| 27 |
+
save_root = args.save_root
|
| 28 |
+
ckpt_path = args.ckpt_path
|
| 29 |
+
codebook_size = args.codebook_size
|
| 30 |
+
|
| 31 |
+
vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',
|
| 32 |
+
codebook_size=codebook_size).to(device)
|
| 33 |
+
checkpoint = torch.load(ckpt_path)['params_ema']
|
| 34 |
+
|
| 35 |
+
vqgan.load_state_dict(checkpoint)
|
| 36 |
+
vqgan.eval()
|
| 37 |
+
|
| 38 |
+
sum_latent = np.zeros((codebook_size)).astype('float64')
|
| 39 |
+
size_latent = 16
|
| 40 |
+
latent = {}
|
| 41 |
+
latent['orig'] = {}
|
| 42 |
+
latent['hflip'] = {}
|
| 43 |
+
for i in ['orig', 'hflip']:
|
| 44 |
+
# for i in ['hflip']:
|
| 45 |
+
for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))):
|
| 46 |
+
img_name = os.path.basename(img_path)
|
| 47 |
+
img = cv2.imread(img_path)
|
| 48 |
+
if i == 'hflip':
|
| 49 |
+
cv2.flip(img, 1, img)
|
| 50 |
+
img = img2tensor(img / 255., bgr2rgb=True, float32=True)
|
| 51 |
+
normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
| 52 |
+
img = img.unsqueeze(0).to(device)
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
# output = net(img)[0]
|
| 55 |
+
x, feat_dict = vqgan.encoder(img, True)
|
| 56 |
+
x, _, log = vqgan.quantize(x)
|
| 57 |
+
# del output
|
| 58 |
+
torch.cuda.empty_cache()
|
| 59 |
+
|
| 60 |
+
min_encoding_indices = log['min_encoding_indices']
|
| 61 |
+
min_encoding_indices = min_encoding_indices.view(size_latent,size_latent)
|
| 62 |
+
latent[i][img_name[:-4]] = min_encoding_indices.cpu().numpy()
|
| 63 |
+
print(img_name, latent[i][img_name[:-4]].shape)
|
| 64 |
+
|
| 65 |
+
latent_save_path = os.path.join(save_root, f'latent_gt_code{codebook_size}.pth')
|
| 66 |
+
torch.save(latent, latent_save_path)
|
| 67 |
+
print(f'\nLatent GT code are saved in {save_root}')
|
scripts/inference_vqgan.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import glob
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
from torchvision.transforms.functional import normalize
|
| 8 |
+
from basicsr.utils import imwrite, img2tensor, tensor2img
|
| 9 |
+
|
| 10 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 11 |
+
|
| 12 |
+
if __name__ == '__main__':
|
| 13 |
+
parser = argparse.ArgumentParser()
|
| 14 |
+
parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512')
|
| 15 |
+
parser.add_argument('-o', '--save_root', type=str, default='./results/vqgan_rec')
|
| 16 |
+
parser.add_argument('--codebook_size', type=int, default=1024)
|
| 17 |
+
parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth')
|
| 18 |
+
args = parser.parse_args()
|
| 19 |
+
|
| 20 |
+
if args.save_root.endswith('/'): # solve when path ends with /
|
| 21 |
+
args.save_root = args.save_root[:-1]
|
| 22 |
+
dir_name = os.path.abspath(args.save_root)
|
| 23 |
+
os.makedirs(dir_name, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 26 |
+
test_path = args.test_path
|
| 27 |
+
save_root = args.save_root
|
| 28 |
+
ckpt_path = args.ckpt_path
|
| 29 |
+
codebook_size = args.codebook_size
|
| 30 |
+
|
| 31 |
+
vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',
|
| 32 |
+
codebook_size=codebook_size).to(device)
|
| 33 |
+
checkpoint = torch.load(ckpt_path)['params_ema']
|
| 34 |
+
|
| 35 |
+
vqgan.load_state_dict(checkpoint)
|
| 36 |
+
vqgan.eval()
|
| 37 |
+
|
| 38 |
+
for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))):
|
| 39 |
+
img_name = os.path.basename(img_path)
|
| 40 |
+
print(img_name)
|
| 41 |
+
img = cv2.imread(img_path)
|
| 42 |
+
img = img2tensor(img / 255., bgr2rgb=True, float32=True)
|
| 43 |
+
normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
| 44 |
+
img = img.unsqueeze(0).to(device)
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
output = vqgan(img)[0]
|
| 47 |
+
output = tensor2img(output, min_max=[-1,1])
|
| 48 |
+
img = tensor2img(img, min_max=[-1,1])
|
| 49 |
+
restored_img = np.concatenate([img, output], axis=1)
|
| 50 |
+
restored_img = output
|
| 51 |
+
del output
|
| 52 |
+
torch.cuda.empty_cache()
|
| 53 |
+
|
| 54 |
+
path = os.path.splitext(os.path.join(save_root, img_name))[0]
|
| 55 |
+
save_path = f'{path}.png'
|
| 56 |
+
imwrite(restored_img, save_path)
|
| 57 |
+
|
| 58 |
+
print(f'\nAll results are saved in {save_root}')
|
| 59 |
+
|