Spaces:
Runtime error
Runtime error
fix some bugs for training.
Browse files
basicsr/data/ffhq_blind_dataset.py
CHANGED
|
@@ -232,7 +232,7 @@ class FFHQBlindDataset(data.Dataset):
|
|
| 232 |
# jpeg
|
| 233 |
if self.jpeg_range is not None:
|
| 234 |
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
|
| 235 |
-
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
|
| 236 |
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
|
| 237 |
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 238 |
|
|
|
|
| 232 |
# jpeg
|
| 233 |
if self.jpeg_range is not None:
|
| 234 |
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
|
| 235 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
|
| 236 |
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
|
| 237 |
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 238 |
|
basicsr/data/ffhq_blind_joint_dataset.py
CHANGED
|
@@ -224,7 +224,7 @@ class FFHQBlindJointDataset(data.Dataset):
|
|
| 224 |
# jpeg
|
| 225 |
if self.jpeg_range is not None:
|
| 226 |
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
|
| 227 |
-
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
|
| 228 |
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
|
| 229 |
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 230 |
|
|
@@ -267,7 +267,7 @@ class FFHQBlindJointDataset(data.Dataset):
|
|
| 267 |
# jpeg
|
| 268 |
if self.jpeg_range_large is not None:
|
| 269 |
jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
|
| 270 |
-
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
|
| 271 |
_, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
|
| 272 |
img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 273 |
|
|
|
|
| 224 |
# jpeg
|
| 225 |
if self.jpeg_range is not None:
|
| 226 |
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
|
| 227 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
|
| 228 |
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
|
| 229 |
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 230 |
|
|
|
|
| 267 |
# jpeg
|
| 268 |
if self.jpeg_range_large is not None:
|
| 269 |
jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
|
| 270 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
|
| 271 |
_, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
|
| 272 |
img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
| 273 |
|
options/CodeFormer_stage3.yml
CHANGED
|
@@ -85,7 +85,7 @@ network_d:
|
|
| 85 |
path:
|
| 86 |
pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
|
| 87 |
param_key_g: params_ema
|
| 88 |
-
strict_load_g:
|
| 89 |
pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
|
| 90 |
resume_state: ~
|
| 91 |
|
|
|
|
| 85 |
path:
|
| 86 |
pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
|
| 87 |
param_key_g: params_ema
|
| 88 |
+
strict_load_g: false
|
| 89 |
pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
|
| 90 |
resume_state: ~
|
| 91 |
|