File size: 22,804 Bytes
9db5ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
"""Template Demo for IBM Granite Hugging Face spaces."""

import html
import os
import random
import re
import time
from pathlib import Path
from threading import Thread

import gradio as gr
import numpy as np
import spaces
import torch
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
from PIL import Image, ImageDraw, ImageOps
from transformers import (
    AutoProcessor,
    Idefics3ForConditionalGeneration,
    TextIteratorStreamer,
)

from themes.research_monochrome import theme

dir_ = Path(__file__).parent.parent

TITLE = "Granite-docling-258m demo"

DESCRIPTION = """
<p>This experimental demo highlights the capabilities of granite-docling-258M for document conversion, 
showcasing Granite Docling's various features. Explore the sample document excerpts and try the sample 
prompts or enter your own. Keep in mind that AI can occasionally make mistakes.</p>
"""

device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")

SAMPLES_PATH = dir_ / "data" / "images"

sample_data = [
    {
        "preview_image": str(SAMPLES_PATH / "new_arxiv.png"),
        "prompts": [
            "Convert this page to docling.",
            "Does the document contain tables?",
            "Can you extract the 2nd section header?",
            "What element is located at <loc_84><loc_403><loc_238><loc_419>",
            "How can effective temperature be computed?",
            "Extract all picture elements on the page.",
        ],
        "image": str(SAMPLES_PATH / "new_arxiv.png"),
        "name": "Doc Conversion",
        "pad": False,
    },
    {
        "preview_image": str(SAMPLES_PATH / "image-2.jpg"),
        "prompts": ["Convert this table to OTSL.", "What is the Net income in 2008?"],
        "image": str(SAMPLES_PATH / "image-2.jpg"),
        "name": "Table Recognition",
        "pad": True,
    },
    {
        "preview_image": str(SAMPLES_PATH / "code.jpg"),
        "prompts": ["Convert code to text."],
        "image": str(SAMPLES_PATH / "code.jpg"),
        "name": "Code Recognition",
        "pad": True,
    },
    {
        "preview_image": str(SAMPLES_PATH / "lake-zurich-switzerland-view-nature-landscapes-7bbda4-1024.jpg"),
        "prompts": ["Describe this image."],
        "image": str(SAMPLES_PATH / "lake-zurich-switzerland-view-nature-landscapes-7bbda4-1024.jpg"),
        "name": "Image Captioning",
        "pad": False,
    },
    {
        "preview_image": str(SAMPLES_PATH / "87664.png"),
        "prompts": ["Convert formula to latex."],
        "image": str(SAMPLES_PATH / "87664.png"),
        "name": "Formula Recognition",
        "pad": True,
    },
    {
        "preview_image": str(SAMPLES_PATH / "06236926002285.png"),
        "prompts": ["Convert chart to OTSL."],
        "image": str(SAMPLES_PATH / "06236926002285.png"),
        "name": "Chart Extraction",
        "pad": False,
    },
    {
        "preview_image": str(SAMPLES_PATH / "ar_page_0.png"),
        "prompts": ["Convert this page to docling."],
        "image": str(SAMPLES_PATH / "ar_page_0.png"),
        "name": "Arabic Conversion",
        "pad": False,
    },
    {
        "preview_image": str(SAMPLES_PATH / "japanse_4_ibm.png"),
        "prompts": ["Convert this page to docling."],
        "image": str(SAMPLES_PATH / "japanse_4_ibm.png"),
        "name": "Japanese Conversion",
        "pad": False,
    },
    {
        "preview_image": str(SAMPLES_PATH / "zh_page_0.png"),
        "prompts": ["Convert this page to docling."],
        "image": str(SAMPLES_PATH / "zh_page_0.png"),
        "name": "Chinese Conversion",
        "pad": False,
    },
]

# Initialize the model
model_id = "ibm-granite/granite-docling-258M"

if gr.NO_RELOAD:
    processor = AutoProcessor.from_pretrained(model_id, use_auth_token=True)
    model = Idefics3ForConditionalGeneration.from_pretrained(
        model_id, device_map=device, torch_dtype=torch.bfloat16, use_auth_token=True
    )
    if not torch.cuda.is_available():
        model = model.to(device)


def lower_md_headers(md: str) -> str:
    """Convert markdown headers to lower level headers."""
    return re.sub(r"(?:^|\n)##?\s(.+)", lambda m: "\n### " + m.group(1), md)


def add_random_padding(image: Image.Image, min_percent: float = 0.1, max_percent: float = 0.10) -> Image.Image:
    """Add random padding to an image."""
    image = image.convert("RGB")

    width, height = image.size

    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)

    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)

    corner_pixel = image.getpixel((0, 0))  # Top-left corner
    padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)

    return padded_image


def draw_bounding_boxes(image_path: str, response_text: str, is_doctag_response: bool = False) -> Image.Image:
    """Draw bounding boxes on the image based on loc tags and return the annotated image."""
    try:
        # Load the original image
        image = Image.open(image_path).convert("RGB")
        draw = ImageDraw.Draw(image)

        # Get image dimensions
        width, height = image.size

        # Color mapping for different classes (RGB values converted to hex)
        class_colors = {
            "caption": "#FFCC99",  # (255, 204, 153)
            "footnote": "#C8C8FF",  # (200, 200, 255)
            "formula": "#C0C0C0",  # (192, 192, 192)
            "list_item": "#9999FF",  # (153, 153, 255)
            "page_footer": "#CCFFCC",  # (204, 255, 204)
            "page_header": "#CCFFCC",  # (204, 255, 204)
            "picture": "#FFCCA4",  # (255, 204, 164)
            "chart": "#FFCCA4",  # (255, 204, 164)
            "section_header": "#FF9999",  # (255, 153, 153)
            "table": "#FFCCCC",  # (255, 204, 204)
            "text": "#FFFF99",  # (255, 255, 153)
            "title": "#FF9999",  # (255, 153, 153)
            "document_index": "#DCDCDC",  # (220, 220, 220)
            "code": "#7D7D7D",  # (125, 125, 125)
            "checkbox_selected": "#FFB6C1",  # (255, 182, 193)
            "checkbox_unselected": "#FFB6C1",  # (255, 182, 193)
            "form": "#C8FFFF",  # (200, 255, 255)
            "key_value_region": "#B7410E",  # (183, 65, 14)
            "paragraph": "#FFFF99",  # (255, 255, 153)
            "reference": "#B0E0E6",  # (176, 224, 230)
            "grading_scale": "#FFCCCC",  # (255, 204, 204)
            "handwritten_text": "#CCFFCC",  # (204, 255, 204)
            "empty_value": "#DCDCDC",  # (220, 220, 220)
        }

        doctag_class_pattern = r"<([^>]+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>[^<]*</[^>]+>"
        doctag_matches = re.findall(doctag_class_pattern, response_text)

        class_pattern = r"<([^>]+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>"
        class_matches = re.findall(class_pattern, response_text)
        seen_coords = set()
        all_class_matches = []

        for match in doctag_matches:
            coords = (match[1], match[2], match[3], match[4])
            if coords not in seen_coords:
                seen_coords.add(coords)
                all_class_matches.append(match)

        for match in class_matches:
            coords = (match[1], match[2], match[3], match[4])
            if coords not in seen_coords:
                seen_coords.add(coords)
                all_class_matches.append(match)

        loc_only_pattern = r"<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>"
        loc_only_matches = re.findall(loc_only_pattern, response_text)

        for class_name, xmin, ymin, xmax, ymax in all_class_matches:
            if is_doctag_response:
                color = class_colors.get(class_name.lower(), None)
                if color is None:
                    for key in class_colors:
                        if class_name.lower() in key or key in class_name.lower():
                            color = class_colors[key]
                            break
                    if color is None:
                        color = "#808080"
            else:
                color = "#E0115F"

            x1 = int((int(xmin) / 500) * width)
            y1 = int((int(ymin) / 500) * height)
            x2 = int((int(xmax) / 500) * width)
            y2 = int((int(ymax) / 500) * height)
            draw.rectangle([x1, y1, x2, y2], outline=color, width=3)

        for xmin, ymin, xmax, ymax in loc_only_matches:
            if is_doctag_response:
                continue
            else:
                color = "#808080"

            x1 = int((int(xmin) / 500) * width)
            y1 = int((int(ymin) / 500) * height)
            x2 = int((int(xmax) / 500) * width)
            y2 = int((int(ymax) / 500) * height)
            draw.rectangle([x1, y1, x2, y2], outline=color, width=3)

        return image

    except Exception:
        return Image.open(image_path)


def clean_model_response(text: str) -> str:
    """Clean up model response by removing special tokens and formatting properly."""
    if not text:
        return "No response generated."
    special_tokens = [
        "<|end_of_text|>",
        "<|end|>",
        "<|assistant|>",
        "<|user|>",
        "<|system|>",
        "<pad>",
        "</s>",
        "<s>",
    ]

    cleaned = text
    for token in special_tokens:
        cleaned = cleaned.replace(token, "")
    cleaned = cleaned.strip()

    if not cleaned or len(cleaned) == 0:
        return "The model generated a response, but it appears to be empty or contain only special tokens."
    return cleaned


@spaces.GPU()
def generate_with_model(question: str, image_path: str, apply_padding: bool = False) -> str:
    """Generate answer using the Granite Docling model directly on the image."""
    if os.environ.get("NO_LLM"):
        time.sleep(2)
        return "This is a simulated response from the Granite Docling model."

    try:
        image = Image.open(image_path).convert("RGB")
        if apply_padding:
            image = add_random_padding(image)
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": question},
                ],
            }
        ]
        prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
        temperature = 0.0
        inputs = processor(text=prompt, images=[image], return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}
        with torch.no_grad():
            generated_ids = model.generate(
                **inputs,
                max_new_tokens=4096,
                temperature=temperature,
                do_sample=temperature > 0,
                pad_token_id=processor.tokenizer.eos_token_id,
            )
        generated_texts = processor.batch_decode(
            generated_ids[:, inputs["input_ids"].shape[1] :],
            skip_special_tokens=False,
        )[0]
        cleaned_response = clean_model_response(generated_texts)

        return cleaned_response

    except Exception as e:
        return f"Error processing image: {e!s}"


_streaming_raw_output = ""


@spaces.GPU()
def generate_with_model_streaming(question: str, image_path: str, apply_padding: bool = False) -> None:
    """Generate answer using the Granite Docling model with streaming."""
    global _streaming_raw_output
    _streaming_raw_output = ""

    try:
        image = Image.open(image_path).convert("RGB")
        if apply_padding:
            image = add_random_padding(image)
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": question},
                ],
            }
        ]

        prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
        temperature = 0.0

        inputs = processor(text=prompt, images=[image], return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}

        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
        generation_args = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=4096,
            temperature=temperature,
            do_sample=temperature > 0,
            pad_token_id=processor.tokenizer.eos_token_id,
        )

        thread = Thread(target=model.generate, kwargs=generation_args)
        thread.start()

        yield "..."
        full_output = ""
        escaped_output = ""

        for new_text in streamer:
            full_output += new_text
            escaped_output += html.escape(new_text)
            yield escaped_output

        _streaming_raw_output = full_output

    except Exception as e:
        yield f"Error generating response: {e!s}"


chatbot = gr.Chatbot(
    examples=[{"text": x} for x in sample_data[0]["prompts"]],
    type="messages",
    label=f"Q&A about {sample_data[0]['name']}",
    height=685,
    group_consecutive_messages=True,
    autoscroll=False,
    elem_classes=["chatbot_view"],
)


css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")

with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
    is_in_edit_mode = gr.State(True)  # in block to be reactive
    selected_doc = gr.State(0)
    current_question = gr.State("")
    uploaded_image_path = gr.State(None)  # Store path to uploaded image

    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESCRIPTION)

    # Create gallery with captions for hover effect
    gallery_with_captions = []
    for sd in sample_data:
        gallery_with_captions.append((sd["preview_image"], sd["name"]))

    document_gallery = gr.Gallery(
        gallery_with_captions,
        label="Select a document",
        rows=1,
        columns=9,
        height="125px",
        allow_preview=False,
        selected_index=0,
        elem_classes=["preview_im_element"],
        show_label=True,
    )

    with gr.Row():
        with gr.Column(), gr.Group():
            image_display = gr.Image(
                sample_data[0]["image"],
                label=f"Preview for {sample_data[0]['name']}",
                height=700,
                interactive=False,
                elem_classes=["image_viewer"],
            )
            # Upload button for custom images
            upload_button = gr.UploadButton(
                "πŸ“ Upload Image", file_types=["image"], elem_classes=["upload_button"], scale=1
            )

        with gr.Column():
            chatbot.render()
            with gr.Row():
                tbb = gr.Textbox(submit_btn=True, show_label=False, placeholder="Type a message...", scale=4)
                fb = gr.Button("Ask new question", visible=False, scale=1)
            fb.click(lambda: [], outputs=[chatbot])

    def sample_image_selected(d: gr.SelectData) -> tuple:
        """Handle sample image selection."""
        dx = sample_data[d.index]
        return (
            gr.update(examples=[{"text": x} for x in dx["prompts"]], label=f"Q&A about {dx['name']}"),
            gr.update(value=dx["image"], label=f"Preview for {dx['name']}"),
            d.index,
        )

    document_gallery.select(lambda: [], outputs=[chatbot])
    document_gallery.select(sample_image_selected, inputs=[], outputs=[chatbot, image_display, selected_doc])

    def update_user_chat_x(x: gr.SelectData) -> list:
        """Update chat with user selection."""
        return [gr.ChatMessage(role="user", content=x.value["text"])]

    def question_from_selection(x: gr.SelectData) -> str:
        """Extract question text from selection."""
        return x.value["text"]

    def handle_image_upload(uploaded_file: str | None) -> tuple:
        """Handle uploaded image and update the display."""
        if uploaded_file is None:
            return None, None, None

        # Update the image display with the uploaded image
        image_update = gr.update(value=uploaded_file, label="Uploaded Image")

        # Update chatbot to show it's ready for questions about the uploaded image
        chatbot_update = gr.update(
            examples=[{"text": "Convert this page to docling."}], label="Q&A about uploaded image"
        )

        # Clear the chat history
        chat_update = []

        return image_update, chatbot_update, chat_update, uploaded_file

    # Connect upload button to handler
    upload_button.upload(
        handle_image_upload, inputs=[upload_button], outputs=[image_display, chatbot, chatbot, uploaded_image_path]
    )

    def send_generate(msg: str, cb: list, selected_sample: int, uploaded_img_path: str | None = None) -> None:
        """Generate response using the model."""
        # Use uploaded image if available, otherwise use selected sample
        image_path = uploaded_img_path if uploaded_img_path is not None else sample_data[selected_sample]["image"]
        original_msg = gr.ChatMessage(role="user", content=msg)
        cb.append(original_msg)

        processing_msg = gr.ChatMessage(
            role="assistant",
            content='<span class="jumping-dots"><span class="dot-1">.</span>  <span class="dot-2">.</span>  '
            '<span class="dot-3">.</span></span>',
        )
        cb.append(processing_msg)
        yield cb, gr.update()

        # Apply padding only for sample images, not uploaded images
        apply_padding = False if uploaded_img_path is not None else sample_data[selected_sample].get("pad", False)

        first_token = True
        try:
            stream_gen = generate_with_model_streaming(msg.strip(), image_path, apply_padding)

            for partial_answer in stream_gen:
                if first_token:
                    cb[-1] = gr.ChatMessage(role="assistant", content=partial_answer)
                    first_token = False
                else:
                    cb[-1] = gr.ChatMessage(role="assistant", content=partial_answer)
                yield cb, gr.update()

        except Exception:
            answer = generate_with_model(msg.strip(), image_path, apply_padding)
            cb[-1] = gr.ChatMessage(role="assistant", content=answer)
            yield cb, gr.update()

        global _streaming_raw_output
        answer = _streaming_raw_output if _streaming_raw_output else partial_answer

        answer = html.unescape(answer)
        answer = clean_model_response(answer)
        class_loc_pattern = r"<([^>]+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>"
        class_loc_matches = re.findall(class_loc_pattern, answer)

        loc_only_pattern = r"<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>"
        loc_only_matches = re.findall(loc_only_pattern, answer)

        has_doctag = "<doctag>" in answer
        has_loc_tags = class_loc_matches or loc_only_matches

        xml_tags = ["<doctag>", "<otsl>", "<chart>", "<code>", "<loc_"]
        if any(tag in answer for tag in xml_tags):
            cb[-1] = gr.ChatMessage(role="assistant", content=f"```xml\n{answer}\n```")
        else:
            cb[-1] = gr.ChatMessage(role="assistant", content=answer)

        if "convert this page to docling" in msg.lower() or ("convert" in msg.lower() and "otsl" in msg.lower()):
            try:
                doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([answer], [Image.open(image_path)])
                doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
                markdown_output = doc.export_to_markdown()
                response = gr.ChatMessage(
                    role="assistant",
                    content=f"\nConverted to Markdown using docling.\n\n**MD Output:**\n\n{markdown_output}",
                )
                cb.append(response)
            except Exception as e:
                error_response = gr.ChatMessage(role="assistant", content=f"Error creating markdown output: {e!s}")
                cb.append(error_response)
        elif "convert formula to latex" in msg.lower():
            try:
                doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([answer], [Image.open(image_path)])
                doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
                markdown_output = doc.export_to_markdown()
                if markdown_output.count("$$") >= 2:
                    parts = markdown_output.split("$$", 2)
                    formula = parts[1].strip()
                    wrapped = f"$$\n\\begin{{aligned}}\n{formula}\n\\end{{aligned}}\n$$"
                    markdown_output = parts[0] + wrapped + parts[2]
                md_response = gr.ChatMessage(
                    role="assistant",
                    content=f"\nConverted to Markdown using docling.\n\n**LaTeX Output:**\n\n{markdown_output}",
                )
                cb.append(md_response)
            except Exception as e:
                error_response = gr.ChatMessage(role="assistant", content=f"Error creating LaTeX output: {e!s}")
                cb.append(error_response)

        if has_loc_tags:
            try:
                annotated_image = draw_bounding_boxes(image_path, answer, is_doctag_response=has_doctag)
                annotated_array = np.array(annotated_image)
                yield cb, gr.update(value=annotated_array, visible=True)
            except Exception:
                yield cb, gr.update(value=image_path)
        else:
            yield cb, gr.update(value=image_path)

    chatbot.example_select(lambda: False, outputs=is_in_edit_mode)
    chatbot.example_select(question_from_selection, inputs=[], outputs=[current_question]).then(
        send_generate,
        inputs=[current_question, chatbot, selected_doc, uploaded_image_path],
        outputs=[chatbot, image_display],
    )

    def textbox_switch(e_mode: bool) -> list:
        """Switch textbox visibility based on edit mode."""
        if not e_mode:
            return [gr.update(visible=False), gr.update(visible=True)]
        else:
            return [gr.update(visible=True), gr.update(visible=False)]

    tbb.submit(lambda: False, outputs=[is_in_edit_mode])
    fb.click(lambda: True, outputs=[is_in_edit_mode])
    is_in_edit_mode.change(textbox_switch, inputs=[is_in_edit_mode], outputs=[tbb, fb])

    tbb.submit(lambda x: x, inputs=[tbb], outputs=[current_question]).then(
        send_generate,
        inputs=[current_question, chatbot, selected_doc, uploaded_image_path],
        outputs=[chatbot, image_display],
    )

if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch()