File size: 2,536 Bytes
f0e4802
6b5a77a
 
f0e4802
6b5a77a
f0e4802
672c82f
f0e4802
 
6b5a77a
f0e4802
 
6b5a77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
title: Polyp Detection AI
emoji: πŸ₯
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.34.2
app_file: app.py
pinned: false
license: mit
---

# πŸ₯ AI-Powered Polyp Detection System

An intelligent medical imaging system that uses deep learning to detect colorectal polyps in colonoscopy images.

## 🎯 Features

- **Real-time polyp detection** using U-Net deep learning architecture
- **Visual segmentation** with overlay highlighting detected regions  
- **Quantitative analysis** providing polyp coverage percentages
- **Medical-grade interface** designed for healthcare applications
- **Adjustable sensitivity** with detection threshold controls

## πŸ”¬ Model Details

- **Model Repository:** [ibrahim313/unet-adam-diceloss](https://huggingface.co/ibrahim313/unet-adam-diceloss)
- **Architecture:** U-Net with 32 base channels
- **Training Dataset:** Kvasir-SEG (1000 polyp images)
- **Framework:** PyTorch
- **Input Size:** 384Γ—384 pixels
- **Output:** Binary segmentation mask

## πŸ“Š Performance

The model achieves excellent performance on the Kvasir-SEG dataset:
- High sensitivity for polyp detection
- Clinically relevant segmentation accuracy  
- Robust performance across various image qualities

## πŸš€ Usage

1. Upload a colonoscopy image
2. Adjust detection threshold if needed (0.1 - 0.9)
3. Click "πŸ” Analyze for Polyps"
4. Review the results and segmentation overlay

## πŸ”§ Technical Implementation

- **Deep Learning:** U-Net encoder-decoder architecture
- **Preprocessing:** Albumentations (resize, normalize)
- **Inference:** PyTorch with CPU optimization
- **Interface:** Gradio for user-friendly interaction
- **Deployment:** Hugging Face Spaces

## ⚠️ Medical Disclaimer

This AI system is intended for **research and educational purposes only**. It should not be used as a substitute for professional medical diagnosis. Always consult qualified healthcare professionals for clinical decisions.

## πŸ“ Model Information

The underlying model was trained using:
- **Loss Function:** Dice Loss  
- **Optimizer:** Adam
- **Training Epochs:** 100
- **Validation Strategy:** Train/Validation/Test split

## 🀝 Contributing

This project is open for improvements and contributions. Feel free to:
- Report issues or bugs
- Suggest enhancements
- Share feedback on medical accuracy
- Contribute to model improvements

## πŸ“ž Contact

For questions or medical AI collaboration opportunities, please reach out through Hugging Face.

---

*Built with ❀️ for advancing medical AI research*