Spaces:
Sleeping
Sleeping
File size: 11,999 Bytes
06387ea 5280a25 06387ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import albumentations as A
from albumentations.pytorch import ToTensorV2
from huggingface_hub import hf_hub_download
import io
import requests
# Your UNET Model Definition
class UNET(nn.Module):
def __init__(self, dropout_rate=0.1, ch=32):
super(UNET, self).__init__()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def conv_block(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Dropout2d(p=dropout_rate),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Dropout2d(p=dropout_rate)
)
self.encoder1 = conv_block(3, ch)
self.encoder2 = conv_block(ch, ch*2)
self.encoder3 = conv_block(ch*2, ch*4)
self.encoder4 = conv_block(ch*4, ch*8)
self.bottle_neck = conv_block(ch*8, ch*16)
self.upsample1 = nn.ConvTranspose2d(ch*16, ch*8, kernel_size=2, stride=2)
self.decoder1 = conv_block(ch*16, ch*8)
self.upsample2 = nn.ConvTranspose2d(ch*8, ch*4, kernel_size=2, stride=2)
self.decoder2 = conv_block(ch*8, ch*4)
self.upsample3 = nn.ConvTranspose2d(ch*4, ch*2, kernel_size=2, stride=2)
self.decoder3 = conv_block(ch*4, ch*2)
self.upsample4 = nn.ConvTranspose2d(ch*2, ch, kernel_size=2, stride=2)
self.decoder4 = conv_block(ch*2, ch)
self.final = nn.Conv2d(ch, 1, kernel_size=1)
def forward(self, x):
c1 = self.encoder1(x)
c2 = self.encoder2(self.pool(c1))
c3 = self.encoder3(self.pool(c2))
c4 = self.encoder4(self.pool(c3))
c5 = self.bottle_neck(self.pool(c4))
u6 = self.upsample1(c5)
u6 = torch.cat([c4, u6], dim=1)
c6 = self.decoder1(u6)
u7 = self.upsample2(c6)
u7 = torch.cat([c3, u7], dim=1)
c7 = self.decoder2(u7)
u8 = self.upsample3(c7)
u8 = torch.cat([c2, u8], dim=1)
c8 = self.decoder3(u8)
u9 = self.upsample4(c8)
u9 = torch.cat([c1, u9], dim=1)
c9 = self.decoder4(u9)
return self.final(c9)
# Global variables
model = None
device = torch.device('cpu') # HF Spaces use CPU
transform = A.Compose([
A.Resize(384, 384),
A.Normalize(mean=(0,0,0), std=(1,1,1), max_pixel_value=255),
ToTensorV2()
])
def load_model():
"""Load model from your HF repository"""
global model
try:
print("π₯ Downloading model from Hugging Face...")
# Download your model from HF
model_path = hf_hub_download(
repo_id="ibrahim313/unet-adam-diceloss",
filename="pytorch_model.bin"
)
# Load model
model = UNET(ch=32)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
print("β
Model loaded successfully!")
return "β
Model loaded from ibrahim313/unet-adam-diceloss"
except Exception as e:
print(f"β Error loading model: {e}")
return f"β Error: {e}"
def predict_polyp(image, threshold=0.5):
"""Predict polyp in uploaded image"""
if model is None:
return None, "β Model not loaded! Please wait for model to load.", None
if image is None:
return None, "β Please upload an image first!", None
try:
# Convert image to numpy array
if isinstance(image, Image.Image):
original_image = np.array(image.convert('RGB'))
else:
original_image = np.array(image)
# Preprocess image
transformed = transform(image=original_image)
input_tensor = transformed['image'].unsqueeze(0).float()
# Make prediction
with torch.no_grad():
prediction = model(input_tensor)
prediction = torch.sigmoid(prediction)
prediction = (prediction > threshold).float()
# Convert to numpy
pred_mask = prediction.squeeze().cpu().numpy()
# Calculate metrics
polyp_pixels = np.sum(pred_mask)
total_pixels = pred_mask.shape[0] * pred_mask.shape[1]
polyp_percentage = (polyp_pixels / total_pixels) * 100
# Create visualization
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Original image
axes[0].imshow(original_image)
axes[0].set_title('πΌοΈ Original Image', fontsize=14)
axes[0].axis('off')
# Predicted mask
axes[1].imshow(pred_mask, cmap='gray')
axes[1].set_title('π Predicted Mask', fontsize=14)
axes[1].axis('off')
# Overlay
axes[2].imshow(original_image)
axes[2].imshow(pred_mask, cmap='Reds', alpha=0.6)
axes[2].set_title('π Detection Overlay', fontsize=14)
axes[2].axis('off')
# Add main title with results
if polyp_pixels > 100:
main_title = f"π¨ POLYP DETECTED! Coverage: {polyp_percentage:.2f}%"
title_color = 'red'
else:
main_title = f"β
No Polyp Detected - Coverage: {polyp_percentage:.2f}%"
title_color = 'green'
fig.suptitle(main_title, fontsize=16, fontweight='bold', color=title_color)
plt.tight_layout()
# Save plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
result_image = Image.open(buf)
plt.close()
# Create detailed results text
if polyp_pixels > 100:
status_emoji = "π¨"
status_text = "POLYP DETECTED"
recommendation = "β οΈ **Recommendation:** Medical review recommended"
else:
status_emoji = "β
"
status_text = "NO POLYP DETECTED"
recommendation = "β
**Recommendation:** Continue routine monitoring"
results_text = f"""
## {status_emoji} **{status_text}**
### π **Analysis Results:**
- **Polyp Coverage:** {polyp_percentage:.3f}%
- **Detected Pixels:** {int(polyp_pixels):,} / {total_pixels:,}
- **Detection Threshold:** {threshold}
### π₯ **Clinical Assessment:**
{recommendation}
### π¬ **Technical Details:**
- **Model:** U-Net (32 channels)
- **Input Size:** 384Γ384 pixels
- **Architecture:** Encoder-Decoder with skip connections
"""
return result_image, results_text, pred_mask
except Exception as e:
error_msg = f"β **Error processing image:** {str(e)}"
return None, error_msg, None
def load_example_image(image_num):
"""Load example images from your HF space"""
try:
if image_num == 1:
# Image 1: cju0qoxqj9q6s0835b43399p4.jpg
image_path = hf_hub_download(
repo_id="ibrahim313/unet-adam-diceloss",
filename="cju0qoxqj9q6s0835b43399p4.jpg",
repo_type="space"
)
else:
# Image 2: cju0roawvklrq0799vmjorwfv.jpg
image_path = hf_hub_download(
repo_id="ibrahim313/unet-adam-diceloss",
filename="cju0roawvklrq0799vmjorwfv.jpg",
repo_type="space"
)
# Load and return the image
image = Image.open(image_path)
return image
except Exception as e:
print(f"Error loading example image {image_num}: {e}")
return None
# Load model when app starts
print("π Starting Polyp Detection App...")
load_status = load_model()
print(load_status)
# Create Gradio Interface
with gr.Blocks(theme=gr.themes.Soft(), title="π₯ Polyp Detection AI") as demo:
# Header
gr.HTML("""
<div style="text-align: center; padding: 30px; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px;">
<h1 style="margin: 0; font-size: 2.5em;">π₯ AI Polyp Detection System</h1>
<p style="margin: 10px 0 0 0; font-size: 1.2em;">Advanced Medical Imaging with Deep Learning</p>
<p style="margin: 5px 0 0 0; opacity: 0.9;">Upload colonoscopy images for intelligent polyp detection</p>
</div>
""")
# Model info
gr.HTML(f"""
<div style="background: black; padding: 15px; border-radius: 8px; border-left: 4px solid #0ea5e9; margin-bottom: 20px;">
<strong>π¬ Model:</strong> ibrahim313/unet-adam-diceloss<br>
<strong>π Architecture:</strong> U-Net with 32 base channels<br>
<strong>π― Dataset:</strong> Trained on Kvasir-SEG (1000 polyp images)<br>
<strong>πΈ Examples:</strong> 2 test colonoscopy images included<br>
<strong>β‘ Status:</strong> {load_status}
</div>
""")
# Main interface
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π€ Upload Image</h3>")
input_image = gr.Image(
label="Drop colonoscopy image here",
type="pil",
height=300
)
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.5,
step=0.1,
label="π― Detection Sensitivity",
info="Higher = more sensitive detection"
)
analyze_btn = gr.Button(
"π Analyze for Polyps",
variant="primary",
size="lg"
)
gr.HTML("<br>")
# Quick examples
gr.HTML("<h4>πΈ Try Sample Images:</h4>")
gr.HTML("<p style='font-size: 0.9em; color: #666; margin: 5px 0;'>Click to load colonoscopy test images</p>")
with gr.Row():
example1_btn = gr.Button("πΌοΈ Test Image 1", size="sm", variant="secondary")
example2_btn = gr.Button("πΌοΈ Test Image 2", size="sm", variant="secondary")
with gr.Column(scale=2):
gr.HTML("<h3>π Detection Results</h3>")
output_image = gr.Image(
label="Analysis Results",
height=400
)
results_text = gr.Markdown(
value="Upload an image and click 'Analyze for Polyps' to see results.",
label="Detailed Analysis"
)
# Event handlers
analyze_btn.click(
fn=predict_polyp,
inputs=[input_image, threshold_slider],
outputs=[output_image, results_text, gr.State()]
)
# Example button handlers
example1_btn.click(
fn=lambda: load_example_image(1),
inputs=[],
outputs=[input_image]
)
example2_btn.click(
fn=lambda: load_example_image(2),
inputs=[],
outputs=[input_image]
)
# Footer
gr.HTML("""
<div style="text-align: center; padding: 20px; margin-top: 40px; border-top: 2px solid #e5e7eb; background: #f9fafb;">
<p style="margin: 0; color: #dc2626; font-weight: bold;">
β οΈ MEDICAL DISCLAIMER
</p>
<p style="margin: 5px 0; color: #4b5563;">
This AI system is for research and educational purposes only.<br>
Always consult qualified medical professionals for clinical decisions.
</p>
<p style="margin: 10px 0 0 0; color: #6b7280; font-size: 0.9em;">
π¬ Powered by PyTorch | π€ Hosted on Hugging Face | π Gradio Interface
</p>
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch() |