File size: 18,157 Bytes
7ca0a26 ef7a021 06f1280 e3ee8f6 7ca0a26 ada9666 4f5e227 7ca0a26 ada9666 7ca0a26 ae7f809 7ca0a26 0187e03 962d7db 7ca0a26 962d7db 01982db 4925f4c 4228646 7ca0a26 ada9666 7ca0a26 ada9666 7ca0a26 e3ee8f6 7ca0a26 ada9666 7ca0a26 ada9666 7ca0a26 e3ee8f6 7ca0a26 ada9666 7ca0a26 ada9666 7ca0a26 e3ee8f6 7ca0a26 ef7a021 7ca0a26 36147d9 7ca0a26 36147d9 7ca0a26 36147d9 7ca0a26 e3ee8f6 7ca0a26 e3ee8f6 7ca0a26 2b6555e 7ca0a26 ada9666 7ca0a26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import os, time, requests, tempfile, asyncio, logging
import gradio as gr
from transformers import pipeline
import edge_tts
from collections import Counter
# βββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ENDPOINT_URL = "https://xzup8268xrmmxcma.us-east-1.aws.endpoints.huggingface.cloud/invocations"
HF_TOKEN = os.getenv("HF_TOKEN")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# βββ Helpers βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) SpeechβText
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def speech_to_text(audio):
if not audio:
return ""
# Gradio supplies a tuple (sr, ndarray)
if isinstance(audio, tuple):
sr, arr = audio
return asr(arr, sampling_rate=sr)["text"]
# filepath
return asr(audio)["text"]
# 2) Prompt formatting
def format_prompt(message, history):
fixed_prompt = """
You are a smart mood analyzer tasked with determining the user's mood for a music recommendation system. Your goal is to classify the user's mood into one of four categories: Happy, Sad, Instrumental, or Party.
Instructions:
1. Engage in a conversation with the user to understand their mood.
2. Ask relevant questions to guide the conversation towards mood classification.
3. If the user's mood is clear, respond with a single word: "Happy", "Sad", "Instrumental", or "Party".
4. If the mood is unclear, continue the conversation with a follow-up question.
5. Limit the conversation to a maximum of 5 exchanges.
6. Do not classify the mood prematurely if it's not evident from the user's responses.
7. Focus on the user's emotional state rather than specific activities or preferences.
8. If unable to classify after 5 exchanges, respond with "Unclear" to indicate the need for more information.
Remember: Your primary goal is mood classification. Stay on topic and guide the conversation towards understanding the user's emotional state.
"""
prompt = f"{fixed_prompt}\n"
for i, (u, b) in enumerate(history):
prompt += f"User: {u}\nAssistant: {b}\n"
if i == 3:
prompt += "Note: This is the last exchange. Classify the mood if possible or respond with 'Unclear'.\n"
prompt += f"User: {message}\nAssistant:"
return prompt
# 3) Call HF Invocation Endpoint
def query_model(prompt, max_new_tokens=64, temperature=0.1):
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
}
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": max_new_tokens, "temperature": temperature},
}
resp = requests.post(ENDPOINT_URL, headers=headers, json=payload, timeout=30)
resp.raise_for_status()
return resp.json()[0]["generated_text"]
# 4) Aggregate mood from history
def aggregate_mood_from_history(history):
mood_words = {"happy", "sad", "instrumental", "party"}
counts = Counter()
for _, bot_response in history:
for tok in bot_response.split():
w = tok.strip('.,?!;"\'').lower()
if w in mood_words:
counts[w] += 1
if not counts:
return None
return counts.most_common(1)[0][0]
# 5) TextβSpeech
def text_to_speech(text):
communicate = edge_tts.Communicate(text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
# save synchronously to simplify callback
asyncio.get_event_loop().run_until_complete(communicate.save(tmp.name))
return tmp.name
# βββ Gradio Callbacks βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def user_turn(user_input, history):
history = history + [(user_input, None)]
formatted = format_prompt(user_input, history)
raw = query_model(formatted)
# temporarily assign raw
history[-1] = (user_input, raw)
# aggregate mood
mood = aggregate_mood_from_history(history)
if mood:
reply = f"Playing {mood.capitalize()} playlist for you!"
else:
reply = raw
history[-1] = (user_input, reply)
return history, history, ""
async def bot_audio(history):
last = history[-1][1]
return text_to_speech(last)
def speech_callback(audio):
return speech_to_text(audio)
# βββ Build the Interface ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks() as demo:
gr.Markdown("## π΅ Mood-Based Music Buddy")
chat = gr.Chatbot()
txt = gr.Textbox(placeholder="Type your mood...", label="Text")
send = gr.Button("Send")
mic = gr.Audio()
out_audio = gr.Audio(label="Response (Audio)", autoplay=True)
state = gr.State([])
def init():
greeting = "Hi! I'm your music buddyβtell me how youβre feeling today."
return [("", greeting)], [("", greeting)], None
demo.load(init, outputs=[state, chat, out_audio])
txt.submit(user_turn, [txt, state], [state, chat, txt])\
.then(bot_audio, [state], [out_audio])
send.click(user_turn, [txt, state], [state, chat, txt])\
.then(bot_audio, [state], [out_audio])
mic.change(speech_callback, [mic], [txt])\
.then(user_turn, [txt, state], [state, chat, txt])\
.then(bot_audio, [state], [out_audio])
if __name__ == "__main__":
demo.launch(debug=True)
# import gradio as gr
# import requests
# from transformers import pipeline
# import edge_tts
# import tempfile
# import asyncio
# import os
# import json
# import time
# import logging
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# ENDPOINT_URL = "https://xzup8268xrmmxcma.us-east-1.aws.endpoints.huggingface.cloud/invocations"
# hf_token = os.getenv("HF_TOKEN")
# print(f"DEBUG: Starting application at {time.strftime('%Y-%m-%d %H:%M:%S')}")
# print(f"DEBUG: HF_TOKEN available: {bool(hf_token)}")
# print(f"DEBUG: Endpoint URL: {ENDPOINT_URL}")
# try:
# print("DEBUG: Loading ASR pipeline...")
# start_time = time.time()
# asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
# print(f"DEBUG: ASR pipeline loaded in {time.time() - start_time:.2f} seconds")
# except Exception as e:
# print(f"DEBUG: Error loading ASR pipeline: {e}")
# asr = None
# INITIAL_MESSAGE = "Hi! I'm your music buddyβtell me about your mood and the type of tunes you're in the mood for today!"
# def speech_to_text(speech):
# print(f"DEBUG: speech_to_text called with input: {speech is not None}")
# if speech is None:
# print("DEBUG: No speech input provided")
# return ""
# try:
# start_time = time.time()
# print("DEBUG: Starting speech recognition...")
# result = asr(speech)["text"]
# print(f"DEBUG: Speech recognition completed in {time.time() - start_time:.2f} seconds")
# print(f"DEBUG: Recognized text: '{result}'")
# return result
# except Exception as e:
# print(f"DEBUG: Error in speech_to_text: {e}")
# return ""
# def classify_mood(input_string):
# print(f"DEBUG: classify_mood called with: '{input_string}'")
# input_string = input_string.lower()
# mood_words = {"happy", "sad", "instrumental", "party"}
# for word in mood_words:
# if word in input_string:
# print(f"DEBUG: Mood classified as: {word}")
# return word, True
# print("DEBUG: No mood classified")
# return None, False
# def generate(prompt, history, temperature=0.1, max_new_tokens=2048):
# print(f"DEBUG: generate() called at {time.strftime('%H:%M:%S')}")
# print(f"DEBUG: Prompt length: {len(prompt)}")
# print(f"DEBUG: History length: {len(history)}")
# if not hf_token:
# error_msg = "Error: Hugging Face authentication required. Please set your HF_TOKEN."
# print(f"DEBUG: {error_msg}")
# return error_msg
# try:
# print("DEBUG: Formatting prompt...")
# start_time = time.time()
# formatted_prompt = format_prompt(prompt, history)
# print(f"DEBUG: Prompt formatted in {time.time() - start_time:.2f} seconds")
# print(f"DEBUG: Formatted prompt length: {len(formatted_prompt)}")
# headers = {"Authorization": f"Bearer {hf_token}", "Content-Type": "application/json"}
# payload = {
# "inputs": formatted_prompt,
# "parameters": {
# "temperature": temperature,
# "max_new_tokens": max_new_tokens
# }
# }
# print("DEBUG: Making API request...")
# api_start_time = time.time()
# response = requests.post(ENDPOINT_URL, headers=headers, json=payload, timeout=60)
# api_duration = time.time() - api_start_time
# print(f"DEBUG: API request completed in {api_duration:.2f} seconds")
# print(f"DEBUG: Response status code: {response.status_code}")
# if response.status_code == 200:
# print("DEBUG: Parsing API response...")
# result = response.json()
# output = result[0]["generated_text"]
# print(f"DEBUG: Generated output: '{output[:100]}...'")
# mood, is_classified = classify_mood(output)
# if is_classified:
# playlist_message = f"Playing {mood.capitalize()} playlist for you!"
# print(f"DEBUG: Returning playlist message: {playlist_message}")
# return playlist_message
# print(f"DEBUG: Returning generated output")
# return output
# else:
# error_msg = f"Error: {response.status_code} - {response.text}"
# print(f"DEBUG: API error: {error_msg}")
# return error_msg
# except requests.exceptions.Timeout:
# error_msg = "Error: API request timed out after 60 seconds"
# print(f"DEBUG: {error_msg}")
# return error_msg
# except Exception as e:
# error_msg = f"Error generating response: {str(e)}"
# print(f"DEBUG: Exception in generate(): {error_msg}")
# return error_msg
# def format_prompt(message, history):
# print("DEBUG: format_prompt called")
# fixed_prompt = """
# You are a smart mood analyzer tasked with determining the user's mood for a music recommendation system. Your goal is to classify the user's mood into one of four categories: Happy, Sad, Instrumental, or Party.
# Instructions:
# 1. Engage in a conversation with the user to understand their mood.
# 2. Ask relevant questions to guide the conversation towards mood classification.
# 3. If the user's mood is clear, respond with a single word: "Happy", "Sad", "Instrumental", or "Party".
# 4. If the mood is unclear, continue the conversation with a follow-up question.
# 5. Limit the conversation to a maximum of 5 exchanges.
# 6. Do not classify the mood prematurely if it's not evident from the user's responses.
# 7. Focus on the user's emotional state rather than specific activities or preferences.
# 8. If unable to classify after 5 exchanges, respond with "Unclear" to indicate the need for more information.
# Remember: Your primary goal is mood classification. Stay on topic and guide the conversation towards understanding the user's emotional state.
# """
# prompt = f"{fixed_prompt}\n"
# for i, (user_prompt, bot_response) in enumerate(history):
# prompt += f"User: {user_prompt}\nAssistant: {bot_response}\n"
# if i == 3:
# prompt += "Note: This is the last exchange. Classify the mood if possible or respond with 'Unclear'.\n"
# prompt += f"User: {message}\nAssistant:"
# print(f"DEBUG: Final prompt length: {len(prompt)}")
# return prompt
# async def text_to_speech(text):
# print(f"DEBUG: text_to_speech called with text length: {len(text)}")
# try:
# start_time = time.time()
# print("DEBUG: Creating TTS communicate object...")
# communicate = edge_tts.Communicate(text)
# print("DEBUG: Creating temporary file...")
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
# tmp_path = tmp_file.name
# print(f"DEBUG: Saving TTS to: {tmp_path}")
# await communicate.save(tmp_path)
# duration = time.time() - start_time
# print(f"DEBUG: TTS completed in {duration:.2f} seconds")
# print(f"DEBUG: TTS file size: {os.path.getsize(tmp_path) if os.path.exists(tmp_path) else 'File not found'}")
# return tmp_path
# except Exception as e:
# print(f"DEBUG: TTS Error: {e}")
# return None
# def process_input(input_text, history):
# print(f"DEBUG: process_input called with text: '{input_text[:50]}...'")
# if not input_text:
# print("DEBUG: No input text provided")
# return history, history, ""
# print("DEBUG: Calling generate function...")
# start_time = time.time()
# response = generate(input_text, history)
# duration = time.time() - start_time
# print(f"DEBUG: generate() completed in {duration:.2f} seconds")
# print(f"DEBUG: Response: '{response[:100]}...'")
# history.append((input_text, response))
# print(f"DEBUG: Updated history length: {len(history)}")
# return history, history, ""
# async def generate_audio(history):
# print(f"DEBUG: generate_audio called with history length: {len(history)}")
# if history and len(history) > 0:
# last_response = history[-1][1]
# print(f"DEBUG: Generating audio for: '{last_response[:50]}...'")
# start_time = time.time()
# audio_path = await text_to_speech(last_response)
# duration = time.time() - start_time
# print(f"DEBUG: Audio generation completed in {duration:.2f} seconds")
# return audio_path
# print("DEBUG: No history available for audio generation")
# return None
# async def init_chat():
# print("DEBUG: init_chat called")
# try:
# history = [("", INITIAL_MESSAGE)]
# print("DEBUG: Generating initial audio...")
# start_time = time.time()
# audio_path = await text_to_speech(INITIAL_MESSAGE)
# duration = time.time() - start_time
# print(f"DEBUG: Initial audio generated in {duration:.2f} seconds")
# print("DEBUG: init_chat completed successfully")
# return history, history, audio_path
# except Exception as e:
# print(f"DEBUG: Error in init_chat: {e}")
# return [("", INITIAL_MESSAGE)], [("", INITIAL_MESSAGE)], None
# def handle_voice_upload(audio_file):
# print(f"DEBUG: handle_voice_upload called with file: {audio_file}")
# if audio_file is None:
# print("DEBUG: No audio file provided")
# return ""
# try:
# start_time = time.time()
# result = speech_to_text(audio_file)
# duration = time.time() - start_time
# print(f"DEBUG: Voice upload processing completed in {duration:.2f} seconds")
# return result
# except Exception as e:
# print(f"DEBUG: Error in handle_voice_upload: {e}")
# return ""
# print("DEBUG: Creating Gradio interface...")
# with gr.Blocks() as demo:
# gr.Markdown("# Mood-Based Music Recommender with Continuous Voice Chat")
# chatbot = gr.Chatbot()
# with gr.Row():
# msg = gr.Textbox(
# placeholder="Type your message here...",
# label="Text Input",
# scale=4
# )
# submit = gr.Button("Send", scale=1)
# with gr.Row():
# voice_input = gr.Audio(
# label="π€ Record your voice or upload audio file",
# sources=["microphone", "upload"],
# type="filepath"
# )
# audio_output = gr.Audio(label="AI Response", autoplay=True)
# state = gr.State([])
# print("DEBUG: Setting up Gradio event handlers...")
# demo.load(init_chat, outputs=[state, chatbot, audio_output])
# def submit_and_generate_audio(input_text, history):
# print(f"DEBUG: submit_and_generate_audio called at {time.strftime('%H:%M:%S')}")
# start_time = time.time()
# new_state, new_chatbot, empty_msg = process_input(input_text, history)
# duration = time.time() - start_time
# print(f"DEBUG: submit_and_generate_audio completed in {duration:.2f} seconds")
# return new_state, new_chatbot, empty_msg
# msg.submit(
# submit_and_generate_audio,
# inputs=[msg, state],
# outputs=[state, chatbot, msg]
# ).then(
# generate_audio,
# inputs=[state],
# outputs=[audio_output]
# )
# submit.click(
# submit_and_generate_audio,
# inputs=[msg, state],
# outputs=[state, chatbot, msg]
# ).then(
# generate_audio,
# inputs=[state],
# outputs=[audio_output]
# )
# voice_input.upload(
# handle_voice_upload,
# inputs=[voice_input],
# outputs=[msg]
# ).then(
# submit_and_generate_audio,
# inputs=[msg, state],
# outputs=[state, chatbot, msg]
# ).then(
# generate_audio,
# inputs=[state],
# outputs=[audio_output]
# )
# print("DEBUG: Gradio interface created successfully")
# if __name__ == "__main__":
# print("DEBUG: Launching Gradio app...")
# demo.launch(share=True, debug=True) |