Spaces:
Sleeping
Sleeping
File size: 8,175 Bytes
50d7c9d 621e9b8 50d7c9d 0e26843 50d7c9d 0e26843 50d7c9d 0e26843 50d7c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
# Fix OpenMP environment variable issue
os.environ['OMP_NUM_THREADS'] = '1'
import gradio as gr
from nemo.collections.speechlm2.models import SALM
import torch
import tempfile
# Load model using official NVIDIA NeMo approach
model_id = "nvidia/canary-qwen-2.5b"
print("Loading NVIDIA Canary-Qwen-2.5B model using NeMo...")
model = SALM.from_pretrained(model_id)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
def generate_text(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
"""Generate text using the NVIDIA NeMo model (LLM mode)"""
try:
# Use LLM mode (text-only) as per official documentation
with model.llm.disable_adapter():
answer_ids = model.generate(
prompts=[[{"role": "user", "content": prompt}]],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
# Convert IDs to text using model's tokenizer
# response = model.tokenizer.ids_to_text(answer_ids[0].cpu())
response = model.tokenizer.ids_to_text(answer_ids[0].to(device))
return response
except Exception as e:
return f"Error generating text: {str(e)}"
def transcribe_audio(audio_file, user_prompt="Transcribe the following:"):
"""Transcribe audio using ASR mode"""
try:
if audio_file is None:
return "No audio file provided"
# Use ASR mode (speech-to-text) as per official documentation
answer_ids = model.generate(
prompts=[
[{"role": "user", "content": f"{user_prompt} {model.audio_locator_tag}", "audio": [audio_file]}]
],
max_new_tokens=128,
)
# Convert IDs to text
# transcript = model.tokenizer.ids_to_text(answer_ids[0].cpu())
transcript = model.tokenizer.ids_to_text(answer_ids[0].to(device))
return transcript
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Chat interface for Gradio"""
# Build conversation context
conversation = ""
for user_msg, bot_msg in history:
conversation += f"User: {user_msg}\nAssistant: {bot_msg}\n"
conversation += f"User: {message}\nAssistant: "
# Generate response
response = generate_text(conversation, max_tokens, temperature, top_p)
# Update history
history.append((message, response))
return "", history
# Create Gradio interface
with gr.Blocks(title="NVIDIA Canary-Qwen-2.5B Chat") as demo:
gr.HTML("""
<div style="text-align: center;">
<h1>π€ NVIDIA Canary-Qwen-2.5B</h1>
<p>Official NeMo implementation - Speech-to-Text & Text Generation</p>
<p><strong>Capabilities:</strong> Audio Transcription + Text Chat</p>
</div>
""")
with gr.Tab("π€ Audio Transcription (ASR)"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File (.wav or .flac)",
type="filepath",
format="wav"
)
asr_prompt = gr.Textbox(
label="Custom Prompt (optional)",
value="Transcribe the following:",
placeholder="Enter custom transcription prompt..."
)
transcribe_btn = gr.Button("π€ Transcribe Audio", variant="primary")
transcript_output = gr.Textbox(
label="Transcription Result",
lines=8,
max_lines=15
)
gr.Examples(
examples=[
["Transcribe the following:"],
["Please transcribe this audio in detail:"],
["Convert this speech to text:"]
],
inputs=[asr_prompt]
)
with gr.Tab("π¬ Text Chat (LLM)"):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(label="Your message", placeholder="Type here...")
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Chat")
with gr.Column(scale=1):
gr.Markdown("### βοΈ Settings")
max_tokens = gr.Slider(
minimum=10, maximum=500, value=200, step=10,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1, maximum=2.0, value=0.7, step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05,
label="Top-p"
)
with gr.Tab("π Single Generation"):
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt...",
lines=5
)
generate_btn = gr.Button("Generate", variant="primary")
output_text = gr.Textbox(
label="Generated Text",
lines=10,
max_lines=20
)
with gr.Row():
single_max_tokens = gr.Slider(10, 500, 200, label="Max Tokens")
single_temperature = gr.Slider(0.1, 2.0, 0.7, label="Temperature")
single_top_p = gr.Slider(0.1, 1.0, 0.9, label="Top-p")
with gr.Tab("βΉοΈ Model Info"):
gr.Markdown("""
## NVIDIA Canary-Qwen-2.5B Model Information
### Capabilities:
- π€ **Audio Transcription (ASR)**: Convert speech to text
- π¬ **Text Generation (LLM)**: Chat and text completion
- π― **Multimodal**: Combines audio and text processing
### Model Details:
- **Size**: 2.5 billion parameters
- **Framework**: NVIDIA NeMo
- **Audio Input**: 16kHz mono-channel .wav or .flac files
- **Languages**: Multiple languages supported
### Usage Tips:
1. **For Audio**: Upload .wav or .flac files (16kHz recommended)
2. **For Text**: Use natural language prompts
3. **Custom Prompts**: You can modify transcription prompts
4. **Parameters**: Adjust temperature and tokens for different outputs
### Official Documentation:
- [Model Card](https://huggingface.co/nvidia/canary-qwen-2.5b)
- [NVIDIA NeMo](https://github.com/NVIDIA/NeMo)
""")
# Event handlers
transcribe_btn.click(
transcribe_audio,
inputs=[audio_input, asr_prompt],
outputs=[transcript_output]
)
# Event handlers
submit_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[msg, chatbot]
)
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[msg, chatbot]
)
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
generate_btn.click(
generate_text,
inputs=[prompt_input, single_max_tokens, single_temperature, single_top_p],
outputs=[output_text]
)
# Example prompts
gr.Examples(
examples=[
["Explain quantum computing in simple terms"],
["Write a short story about AI"],
["What are the benefits of renewable energy?"],
["How do neural networks work?"],
["Summarize the key points about machine learning"]
],
inputs=[prompt_input]
)
if __name__ == "__main__":
demo.launch(share=True)
|