CitraIlmu / src /citrailmu /__init__.py
ikmalsaid's picture
Updated src files
76bd32a verified
import os
import re
import time
import uuid
import base64
import requests
import tempfile
from datetime import datetime
from pytubefix import YouTube
from colorpaws import ColorPaws
from pytubefix.cli import on_progress
from google import generativeai as genai
from moviepy.editor import AudioFileClip
from markdown_pdf import MarkdownPdf, Section
class CitraIlmu:
"""Copyright (C) 2025 Ikmal Said. All rights reserved"""
def __init__(self, mode='default', api_key=None, model='gemini-1.5-flash-8b', yt_api=False, yt_api_key=None):
"""
Initialize Citrailmu module.
Parameters:
mode (str): Startup mode ('default' or 'webui')
api_key (str): API key for AI services
model (str): AI model to use
yt_api (bool): Use YouTube API
yt_api_key (str): YouTube API key
"""
self.logger = ColorPaws(name=self.__class__.__name__, log_on=True, log_to=None)
self.aigc_model = model
self.api_key = api_key
self.yt_api = yt_api
self.yt_api_key = yt_api_key
self.logger.info("CitraIlmu is ready!")
if mode != 'default':
if mode == 'webui':
self.start_webui()
else:
raise ValueError(f"Invalid startup mode: {mode}")
def __is_youtube_url(self, url):
"""Check if the URL is a YouTube URL"""
youtube_regex = r'(https?://)?(www\.)?(youtube|youtu|youtube-nocookie)\.(com|be)/'
return bool(re.match(youtube_regex, url))
def __is_url(self, url):
"""Check if string is a URL"""
url_regex = r'https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+'
return bool(re.match(url_regex, url))
def __format_duration(self, seconds):
"""Convert seconds to HH:MM:SS format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
def __compress_audio(self, filepath, task_id):
"""Compress audio to optimal size while maintaining quality"""
self.logger.info(f"[{task_id}] Compressing audio: {filepath}")
try:
filename = re.sub(r'[^\w\-]', '_', os.path.splitext(os.path.basename(filepath))[0])
temp_path = os.path.join(tempfile.gettempdir(), f"{filename}.mp3")
audio = None
try:
audio = AudioFileClip(filepath)
audio = audio.audio_fadeout(0.1)
audio.write_audiofile(
temp_path,
fps=44100,
nbytes=2,
bitrate="16k",
ffmpeg_params=["-ac", "1"],
verbose=False,
logger=None
)
return temp_path
finally:
if audio:
audio.close()
except Exception as e:
self.logger.error(f"[{task_id}] Audio compression failed: {str(e)}")
return None
def __media_processor(self, input_path, task_id):
"""Process media input (local file, YouTube URL, or web URL)"""
try:
if os.path.isfile(input_path):
return self.__compress_audio(input_path, task_id)
elif self.__is_youtube_url(input_path):
if self.yt_api:
return self.__process_youtube_api(input_path, task_id)
else:
return self.__process_youtube(input_path, task_id)
elif self.__is_url(input_path):
return self.__process_web_url(input_path, task_id)
else:
self.logger.error(f"[{task_id}] Invalid input: not a file path or URL")
return None
except Exception as e:
self.logger.error(f"[{task_id}] Media processing failed: {str(e)}")
return None
def __convert_b64(self, url):
"""Convert URL from base64 to string"""
return base64.b64decode(url).decode('utf-8')
def __process_youtube_api(self, url, task_id):
"""Process YouTube URL using API"""
if self.yt_api_key:
api_key = self.yt_api_key
else:
api_key = os.getenv('YT_API_KEY')
if not api_key:
raise ValueError("No API key available. Please set YT_API_KEY environment variable or provide it during initialization")
self.logger.info(f"[{task_id}] Processing YouTube URL via API: {url}")
try:
endpoint = self.__convert_b64("eW91dHViZS12aWRlby1hbmQtc2hvcnRzLWRvd25sb2FkZXIxLnAucmFwaWRhcGkuY29t")
api_url = f"https://{endpoint}/api/getYTVideo"
payload = {"url": url}
headers = {
"x-rapidapi-key": api_key,
"x-rapidapi-host": endpoint
}
response = requests.get(api_url, params=payload, headers=headers)
response.raise_for_status()
video_data = response.json()
video_title = video_data.get("description")
# Find the audio-only link with low quality
download_link = None
for link_data in video_data.get("links", []):
if link_data.get("quality") == "video_render_480p (video+audio)":
download_link = link_data.get("link")
break
if not download_link:
raise ValueError("No audio-only URL found in the response")
if not video_title:
raise ValueError("No video title found in the response")
self.logger.info(f"[{task_id}] Downloading video: '{video_title}'")
clean_title = re.sub(r'[^\w\-]', '_', video_title)
temp_path = os.path.join(tempfile.gettempdir(), f"{task_id}_{clean_title}.mp4")
# Download with progress tracking and validation
download_response = requests.get(download_link, stream=True)
download_response.raise_for_status()
block_size = 8192
downloaded = 0
with open(temp_path, 'wb') as f:
for chunk in download_response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
# Validate downloaded file
if not os.path.exists(temp_path) or os.path.getsize(temp_path) == 0:
raise ValueError("Downloaded file is empty or does not exist")
if os.path.getsize(temp_path) < 1024: # Less than 1KB is sus
raise ValueError("Downloaded file is too small to be valid")
compressed_audio = self.__compress_audio(temp_path, task_id)
if os.path.exists(temp_path):
os.unlink(temp_path)
return compressed_audio
except ValueError as e:
self.logger.error(f"[{task_id}] Youtube API processing failed: {str(e)}")
if os.path.exists(temp_path):
os.unlink(temp_path)
return None
def __process_youtube(self, url, task_id):
"""Process YouTube URL"""
self.logger.info(f"[{task_id}] Processing YouTube URL: {url}")
try:
yt = YouTube(url, on_progress_callback=on_progress)
clean_title = re.sub(r'[^\w\-]', '_', yt.title)
temp_filename = f"{task_id}_{clean_title}.m4a"
self.logger.info(f"[{task_id}] Downloading video: '{yt.title}'")
downloaded_file = yt.streams.get_audio_only().download(
output_path=tempfile.gettempdir(),
filename=temp_filename
)
compressed_audio = self.__compress_audio(downloaded_file, task_id)
if os.path.exists(downloaded_file):
os.unlink(downloaded_file)
return compressed_audio
except Exception as e:
self.logger.error(f"[{task_id}] YouTube processing failed: {str(e)}")
return None
def __process_web_url(self, url, task_id):
"""Process web URL"""
self.logger.info(f"[{task_id}] Processing web URL: {url}")
try:
filename = os.path.basename(url.split('?')[0]) or f"download_{int(time.time())}"
temp_path = os.path.join(tempfile.gettempdir(), f"{filename}.mp4")
with open(temp_path, 'wb') as f:
response = requests.get(url, stream=True)
if response.status_code == 200:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
compressed_audio = self.__compress_audio(temp_path, task_id)
if os.path.exists(temp_path):
os.unlink(temp_path)
return compressed_audio
except Exception as e:
self.logger.error(f"[{task_id}] URL processing failed: {str(e)}")
return None
def __clean_markdown(self, text):
"""Clean up markdown text"""
text = re.sub(r'```[a-zA-Z]*\n', '', text)
text = re.sub(r'```\n?', '', text)
return text.strip()
def __aigc_processor(self, input_path, target_language, processing_mode, task_id):
"""Process input path using AI"""
try:
if self.api_key:
genai.configure(api_key=self.api_key)
audio = AudioFileClip(input_path)
duration = audio.duration
formatted_duration = self.__format_duration(duration)
audio.close()
if processing_mode.lower() == 'analysis':
prompt = f"You are an expert audio transcriber and content analyst. Your task is to provide a transcript of the given audio file from 00:00 to {formatted_duration}. You must list down every discussed topic, themes, points and reflections in {target_language}. You must begin with the most suitable title of the speech with overview of the speech and must end with the conclusion. Do not include any opening or closing remarks."
elif processing_mode.lower() == 'transcript':
prompt = f"You are an expert audio transcriber. Your task is to provide a transcript of the given audio file from 00:00 to {formatted_duration}. You must begin with the most suitable title of the speech before the speech starts. Do not include any opening or closing remarks."
else:
self.logger.error(f"[{task_id}] Invalid processing mode: {processing_mode}")
return None
self.logger.info(f"[{task_id}] Uploading audio for processing...")
audio_file = genai.upload_file(path=input_path)
self.logger.info(f"[{task_id}] Processing AI {processing_mode}...")
model = genai.GenerativeModel(self.aigc_model)
response = model.generate_content([prompt, audio_file])
return self.__clean_markdown(response.text)
except Exception as e:
self.logger.error(f"[{task_id}] AI {processing_mode} processing failed: {str(e)}")
return None
def __markdown_to_pdf(self, markdown_text, original_path, target_language, processing_mode, task_id):
"""Convert markdown to PDF"""
try:
filename = re.sub(r'[^\w\-]', '_', os.path.splitext(os.path.basename(original_path))[0])
clean_filename = f"{filename}_{processing_mode.lower()}" + (f"_{target_language.lower().replace(' ', '_')}" if processing_mode.lower() == 'analysis' else '')
pdf_path = os.path.join(tempfile.gettempdir(), f"{clean_filename}.pdf")
self.logger.info(f"[{task_id}] Generating PDF: {pdf_path}")
pdf = MarkdownPdf(toc_level=3)
# Add main content section with custom CSS
css = """
body {
font-family: 'Segoe UI', sans-serif;
text-align: justify;
text-justify: inter-word;
}
table, th, td {
border: 1px solid black;
}
h1 {
text-align: center;
color: #2c3e50;
margin-top: 1.5em;
margin-bottom: 0.8em;
font-size: 1.25em;
font-weight: 500;
}
h2, h3, h4, h5, h6 {
color: #34495e;
margin-top: 1.5em;
margin-bottom: 0.8em;
text-align: left;
}
p {
margin: 0.8em 0;
}
"""
# Ensure the content starts with a level 1 header
if not markdown_text.startswith('# '):
if processing_mode.lower() == 'analysis':
title = f"CitraIlmu Analysis ({target_language})"
elif processing_mode.lower() == 'transcript':
title = f"CitraIlmu Transcript ({target_language})"
markdown_text = f"# {title}\n\n{markdown_text}"
# Add the main content section
main_section = Section(markdown_text, toc=True)
pdf.add_section(main_section, user_css=css)
# Set PDF metadata with Unicode support
pdf.meta["title"] = title
pdf.meta["subject"] = title
pdf.meta["author"] = "Ikmal Said"
pdf.meta["creator"] = "CitraIlmu"
# Save the PDF
pdf.save(pdf_path)
return pdf_path
except Exception as e:
self.logger.error(f"[{task_id}] PDF generation failed: {str(e)}")
return None
def __get_taskid(self):
"""
Generate a unique task ID for request tracking.
Returns a combination of timestamp and UUID to ensure uniqueness.
Format: YYYYMMDD_HHMMSS_UUID8
"""
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
uuid_part = str(uuid.uuid4())[:8]
task_id = f"{timestamp}_{uuid_part}"
return task_id
def process_media(self, input_path, target_language="Bahasa Malaysia", processing_mode="Analysis"):
"""Process media for specified target language and processing mode.
Parameters:
input_path (str): Path to the media file
target_language (str): Target language for the analysis ('bahasa malaysia', 'arabic', 'english', 'mandarin', 'tamil')
processing_mode (str): Processing mode ('analysis' or 'transcript')
"""
if not input_path or input_path == "":
raise ValueError("Input path is required!")
elif target_language.lower() not in ["bahasa malaysia", "arabic", "english", "mandarin", "tamil"]:
raise ValueError("Invalid target language!")
elif processing_mode.lower() not in ["analysis", "transcript"]:
raise ValueError("Invalid processing mode!")
task_id = self.__get_taskid()
self.logger.info(f"[{task_id}] Task started: {processing_mode}" + (f" in {target_language}" if processing_mode.lower() == 'analysis' else ''))
try:
compressed_file = self.__media_processor(input_path, task_id)
if not compressed_file:
return None, None, None
markdown_text = self.__aigc_processor(compressed_file, target_language, processing_mode, task_id)
if not markdown_text:
return compressed_file, None, None
pdf_file = self.__markdown_to_pdf(markdown_text, compressed_file, target_language, processing_mode, task_id)
if not pdf_file:
return compressed_file, None, markdown_text
self.logger.info(f"[{task_id}] Task completed successfully!")
return compressed_file, pdf_file, markdown_text
except Exception as e:
self.logger.error(f"[{task_id}] Task failed: {str(e)}")
return None, None, None
def start_webui(self, host: str = None, port: int = None, browser: bool = False, upload_size: str = "100MB",
public: bool = False, limit: int = 10, quiet: bool = False):
"""
Start Citrailmu WebUI with all features.
Parameters:
- host (str): Server host (default: None)
- port (int): Server port (default: None)
- browser (bool): Launch browser automatically (default: False)
- upload_size (str): Maximum file size for uploads (default: "100MB")
- public (bool): Enable public URL mode (default: False)
- limit (int): Maximum number of concurrent requests (default: 10)
- quiet (bool): Quiet mode (default: False)
"""
from .webui import CitraIlmuWebUI
CitraIlmuWebUI(self, host=host, port=port, browser=browser, upload_size=upload_size,
public=public, limit=limit, quiet=quiet)