Spaces:
Sleeping
Sleeping
File size: 14,677 Bytes
dd19932 61fb024 2262f59 61fb024 dd19932 c2b5b0b dd19932 c2b5b0b dd19932 e382e80 dd19932 fcabd7a e382e80 61fb024 dd19932 3455d98 dd19932 c2b5b0b f4b6beb 61fb024 e382e80 3455d98 2262f59 3455d98 e382e80 3455d98 e382e80 3455d98 dd19932 e382e80 61fb024 fcabd7a e382e80 61fb024 3455d98 61fb024 c2b5b0b e382e80 4adf18d 3455d98 61fb024 3455d98 e382e80 3455d98 e382e80 3455d98 61fb024 dd19932 fcabd7a dd19932 61fb024 fcabd7a 61fb024 2262f59 61fb024 e382e80 61fb024 fcabd7a e382e80 61fb024 e382e80 61fb024 c2b5b0b e382e80 2262f59 8e004b8 e382e80 8e004b8 e8c0366 8e004b8 e382e80 2262f59 61fb024 e382e80 61fb024 dd19932 a7f1030 c2b5b0b c1bd891 c2b5b0b dd19932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import gradio as gr
from openfda_client import (
get_top_adverse_events,
get_drug_event_pair_frequency,
get_serious_outcomes,
get_time_series_data,
get_report_source_data
)
from plotting import (
create_bar_chart,
create_outcome_chart,
create_time_series_chart,
create_pie_chart,
create_placeholder_chart
)
import pandas as pd
# --- Formatting Functions ---
def format_pair_frequency_results(data: dict, drug_name: str, event_name: str) -> str:
"""Formats the results for the drug-event pair frequency tool."""
if "error" in data:
return f"An error occurred: {data['error']}"
results = data.get("meta", {}).get("results", {})
total_reports = results.get("total", 0)
total_for_drug = results.get("total_for_drug", 0)
percentage_string = ""
if total_for_drug > 0:
percentage = (total_reports / total_for_drug) * 100
percentage_string = (
f"\n\nThis combination accounts for **{percentage:.2f}%** of the **{total_for_drug:,}** "
f"total adverse event reports for '{drug_name.title()}' in the database."
)
result = (
f"Found **{total_reports:,}** reports for the combination of "
f"'{drug_name.title()}' and '{event_name.title()}'.{percentage_string}\n\n"
"**Source**: FDA FAERS via OpenFDA\n"
"**Disclaimer**: Spontaneous reports do not prove causation. Consult a healthcare professional."
)
return result
# --- Tool Functions ---
def top_adverse_events_tool(drug_name: str, top_n: int = 10, patient_sex: str = "all", min_age: int = 0, max_age: int = 120):
"""
MCP Tool: Finds the top reported adverse events for a given drug.
Args:
drug_name (str): The generic name of the drug is preferred! A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
top_n (int): The number of top adverse events to return.
patient_sex (str): The patient's sex to filter by.
min_age (int): The minimum age for the filter.
max_age (int): The maximum age for the filter.
Returns:
tuple: A Plotly figure, a Pandas DataFrame, and a summary string.
"""
if top_n is None:
top_n = 10
if patient_sex is None:
patient_sex = "all"
if min_age is None:
min_age = 0
if max_age is None:
max_age = 120
sex_code = None
if patient_sex == "Male":
sex_code = "1"
elif patient_sex == "Female":
sex_code = "2"
age_range = None
if min_age > 0 or max_age < 120:
age_range = (min_age, max_age)
data = get_top_adverse_events(drug_name, limit=top_n, patient_sex=sex_code, age_range=age_range)
if "error" in data:
error_message = f"An error occurred: {data['error']}"
return create_placeholder_chart(error_message), pd.DataFrame(), error_message
if "results" not in data or not data["results"]:
message = f"No adverse event data found for '{drug_name}'. The drug may not be in the database or it might be misspelled."
return create_placeholder_chart(message), pd.DataFrame(), message
chart = create_bar_chart(data, drug_name)
df = pd.DataFrame(data["results"])
df = df.rename(columns={"term": "Adverse Event", "count": "Report Count"})
total_reports = data.get("meta", {}).get("total_reports_for_query", 0)
if total_reports > 0:
df['Relative Frequency (%)'] = ((df['Report Count'] / total_reports) * 100).round(2)
else:
df['Relative Frequency (%)'] = 0.0
header = (
f"### Top {len(df)} Adverse Events for '{drug_name.title()}'\n"
f"Based on **{total_reports:,}** total reports matching the given filters.\n"
"**Source**: FDA FAERS via OpenFDA\n"
"**Disclaimer**: Spontaneous reports do not prove causation. Consult a healthcare professional."
)
return chart, df, header
def serious_outcomes_tool(drug_name: str, top_n: int = 6):
"""
MCP Tool: Finds the top reported serious outcomes for a given drug.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
top_n (int): The number of top serious outcomes to return.
Returns:
tuple: A Plotly figure, a Pandas DataFrame, and a summary string.
"""
if top_n is None:
top_n = 6
data = get_serious_outcomes(drug_name, limit=top_n)
if "error" in data:
error_message = f"An error occurred: {data['error']}"
return create_placeholder_chart(error_message), pd.DataFrame(), error_message
if "results" not in data or not data["results"]:
message = f"No serious outcome data found for '{drug_name}'. The drug may not be in the database or it might be misspelled."
return create_placeholder_chart(message), pd.DataFrame(), message
chart = create_outcome_chart(data, drug_name)
df = pd.DataFrame(data["results"])
df = df.rename(columns={"term": "Serious Outcome", "count": "Report Count"})
total_serious_reports = data.get("meta", {}).get("total_reports_for_query", 0)
if total_serious_reports > 0:
df['% of Serious Reports'] = ((df['Report Count'] / total_serious_reports) * 100).round(2)
else:
df['% of Serious Reports'] = 0.0
header = (
f"### Top {len(df)} Serious Outcomes for '{drug_name.title()}'\n"
f"Out of **{total_serious_reports:,}** total serious reports. "
"Note: a single report may be associated with multiple outcomes.\n"
"**Source**: FDA FAERS via OpenFDA\n"
"**Disclaimer**: Spontaneous reports do not prove causation. Consult a healthcare professional."
)
return chart, df, header
def drug_event_stats_tool(drug_name: str, event_name: str):
"""
MCP Tool: Gets the total number of reports for a specific drug and adverse event pair.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
event_name (str): The name of the adverse event to search for.
Returns:
str: A formatted string with the total count of reports.
"""
data = get_drug_event_pair_frequency(drug_name, event_name)
return format_pair_frequency_results(data, drug_name, event_name)
def time_series_tool(drug_name: str, event_name: str, aggregation: str):
"""
MCP Tool: Creates a time-series plot for a drug-event pair.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
event_name (str): The name of the adverse event.
aggregation (str): Time aggregation ('Yearly' or 'Quarterly').
Returns:
A Plotly figure.
"""
agg_code = 'Y' if aggregation == 'Yearly' else 'Q'
data = get_time_series_data(drug_name, event_name)
if "error" in data or not data.get("results"):
return create_placeholder_chart(f"No time-series data found for '{drug_name}' and '{event_name}'.")
chart = create_time_series_chart(data, drug_name, event_name, time_aggregation=agg_code)
return chart
def report_source_tool(drug_name: str, top_n: int = 5):
"""
MCP Tool: Creates a pie chart of report sources for a given drug.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
top_n (int): The number of top sources to return.
Returns:
tuple: A Plotly figure, a Pandas DataFrame, and a summary string.
"""
if top_n is None:
top_n = 5
data = get_report_source_data(drug_name, limit=top_n)
if "error" in data:
error_message = f"An error occurred: {data['error']}"
return create_placeholder_chart(error_message), pd.DataFrame(), error_message
if not data or not data.get("results"):
message = f"No report source data found for '{drug_name}'."
return create_placeholder_chart(message), pd.DataFrame(), message
chart = create_pie_chart(data, drug_name)
df = pd.DataFrame(data['results'])
df = df.rename(columns={"term": "Source", "count": "Report Count"})
total_reports = data.get("meta", {}).get("total_reports_for_query", 0)
if total_reports > 0:
df['Percentage'] = ((df['Report Count'] / total_reports) * 100).round(2)
else:
df['Percentage'] = 0.0
header = (
f"### Report Sources for '{drug_name.title()}'\n"
f"Based on **{total_reports:,}** reports with source information."
)
return chart, df, header
# --- Gradio Interface ---
with open("gradio_readme.md", "r") as f:
readme_content = f.read()
with gr.Blocks(title="Medication Adverse-Event Explorer") as demo:
gr.Markdown("# Medication Adverse-Event Explorer")
with gr.Tabs():
with gr.TabItem("About"):
gr.HTML("""
<div style="display: flex; justify-content: center;">
<iframe width="560" height="315" src="https://www.youtube.com/embed/noGG-lQwn2U"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
</div>
""")
gr.Markdown(readme_content)
with gr.TabItem("Top Events"):
gr.Interface(
fn=top_adverse_events_tool,
inputs=[
gr.Textbox(
label="Drug Name",
info="Enter a brand or generic drug name (e.g., 'Aspirin', 'Lisinopril')."
),
gr.Slider(
5, 50,
value=10,
label="Number of Events to Show",
step=1
),
gr.Radio(
["All", "Male", "Female"],
label="Patient Sex",
value="All"
),
gr.Slider(
0, 120,
value=0,
label="Minimum Age",
step=1
),
gr.Slider(
0, 120,
value=120,
label="Maximum Age",
step=1
),
],
outputs=[
gr.Plot(label="Top Adverse Events Chart"),
gr.DataFrame(label="Top Adverse Events", interactive=False),
gr.Markdown()
],
title="Top Adverse Events by Drug",
description="Find the most frequently reported adverse events for a specific medication.",
examples=[["Lisinopril"], ["Ozempic"], ["Metformin"]],
allow_flagging="never",
)
with gr.TabItem("Serious Outcomes"):
gr.Interface(
fn=serious_outcomes_tool,
inputs=[
gr.Textbox(
label="Drug Name",
info="Enter a brand or generic drug name (e.g., 'Aspirin', 'Lisinopril')."
),
gr.Slider(1, 6, value=6, label="Number of Outcomes to Show", step=1),
],
outputs=[
gr.Plot(label="Top Serious Outcomes Chart"),
gr.DataFrame(label="Top Serious Outcomes", interactive=False),
gr.Markdown()
],
title="Serious Outcome Analysis",
description="Find the most frequently reported serious outcomes (e.g., hospitalization, death) for a specific medication.",
examples=[["Lisinopril"], ["Ozempic"], ["Metformin"]],
allow_flagging="never",
)
with gr.TabItem("Event Frequency"):
gr.Interface(
fn=drug_event_stats_tool,
inputs=[
gr.Textbox(label="Drug Name", info="e.g., 'Ibuprofen'"),
gr.Textbox(label="Adverse Event", info="e.g., 'Headache'")
],
outputs=[gr.Textbox(label="Report Count", lines=5)],
title="Drug/Event Pair Frequency",
description="Get the total number of reports for a specific drug and adverse event combination.",
examples=[["Lisinopril", "Cough"], ["Ozempic", "Nausea"]],
)
with gr.TabItem("Time-Series Trends"):
gr.Interface(
fn=time_series_tool,
inputs=[
gr.Textbox(label="Drug Name", info="e.g., 'Ibuprofen'"),
gr.Textbox(label="Adverse Event", info="e.g., 'Headache'"),
gr.Radio(["Yearly", "Quarterly"], label="Aggregation", value="Yearly")
],
outputs=[gr.Plot(label="Report Trends")],
title="Time-Series Trend Plotting",
description="Plot the number of adverse event reports over time for a specific drug-event pair.",
examples=[["Lisinopril", "Cough", "Yearly"], ["Ozempic", "Nausea", "Quarterly"]],
)
with gr.TabItem("Report Sources"):
gr.Interface(
fn=report_source_tool,
inputs=[
gr.Textbox(label="Drug Name", info="e.g., 'Aspirin', 'Lisinopril'"),
gr.Slider(1, 5, value=5, label="Number of Sources to Show", step=1),
],
outputs=[
gr.Plot(label="Report Source Breakdown"),
gr.DataFrame(label="Report Source Data", interactive=False),
gr.Markdown()
],
title="Report Source Breakdown",
description="Show a pie chart breaking down the source of the reports (e.g., Consumer, Physician).",
examples=[["Lisinopril"], ["Ibuprofen"]],
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch(mcp_server=True, server_name="0.0.0.0") |