Spaces:
Sleeping
Sleeping
File size: 17,788 Bytes
dd19932 61fb024 dd19932 61fb024 fcabd7a 61fb024 06651f3 61fb024 dd19932 61fb024 dd19932 61fb024 dd19932 61fb024 dd19932 e382e80 c6579d1 dd19932 e382e80 dd19932 e382e80 79d7705 dd19932 c6579d1 dd19932 c2b5b0b dd19932 c2b5b0b dd19932 61fb024 dd19932 c2b5b0b dd19932 c2b5b0b dd19932 c2b5b0b dd19932 c2b5b0b dd19932 c2b5b0b dd19932 61fb024 e382e80 61fb024 06651f3 61fb024 e382e80 61fb024 06651f3 61fb024 06651f3 e382e80 61fb024 06651f3 e382e80 06651f3 e382e80 06651f3 e382e80 06651f3 e382e80 06651f3 61fb024 3455d98 61fb024 e382e80 61fb024 e382e80 61fb024 e382e80 61fb024 c6579d1 61fb024 e382e80 61fb024 e382e80 61fb024 c6579d1 61fb024 e382e80 61fb024 fcabd7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import requests
from cachetools import TTLCache, cached
import time
from typing import Optional, Tuple
API_BASE_URL = "https://api.fda.gov/drug/event.json"
# Cache with a TTL of 10 minutes (600 seconds)
cache = TTLCache(maxsize=256, ttl=600)
# 240 requests per minute per IP. A 0.25s delay is a simple way to stay under.
REQUEST_DELAY_SECONDS = 0.25
DRUG_SYNONYM_MAPPING = {
"tylenol": "acetaminophen",
"advil": "ibuprofen",
"motrin": "ibuprofen",
"aleve": "naproxen",
"benadryl": "diphenhydramine",
"claritin": "loratadine",
"zyrtec": "cetirizine",
"allegra": "fexofenadine",
"zantac": "ranitidine",
"pepcid": "famotidine",
"prilosec": "omeprazole",
"lipitor": "atorvastatin",
"zocor": "simvastatin",
"norvasc": "amlodipine",
"hydrochlorothiazide": "hctz",
"glucophage": "metformin",
"synthroid": "levothyroxine",
"ambien": "zolpidem",
"xanax": "alprazolam",
"prozac": "fluoxetine",
"zoloft": "sertraline",
"paxil": "paroxetine",
"lexapro": "escitalopram",
"cymbalta": "duloxetine",
"wellbutrin": "bupropion",
"desyrel": "trazodone",
"eliquis": "apixaban",
"xarelto": "rivaroxaban",
"pradaxa": "dabigatran",
"coumadin": "warfarin",
"januvia": "sitagliptin",
"tradjenta": "linagliptin",
"jardiance": "empagliflozin",
"farxiga": "dapagliflozin",
"invokana": "canagliflozin",
"ozempic": "semaglutide",
"victoza": "liraglutide",
"trulicity": "dulaglutide",
"humira": "adalimumab",
"enbrel": "etanercept",
"remicade": "infliximab",
"stelara": "ustekinumab",
"keytruda": "pembrolizumab",
"opdivo": "nivolumab",
"revlimid": "lenalidomide",
"rituxan": "rituximab",
"herceptin": "trastuzumab",
"avastin": "bevacizumab",
"spiriva": "tiotropium",
"advair": "fluticasone/salmeterol",
"symbicort": "budesonide/formoterol",
"singulair": "montelukast",
"lyrica": "pregabalin",
"neurontin": "gabapentin",
"topamax": "topiramate",
"lamictal": "lamotrigine",
"keppra": "levetiracetam",
"dilantin": "phenytoin",
"tegretol": "carbamazepine",
"depakote": "divalproex",
"vyvanse": "lisdexamfetamine",
"adderall": "amphetamine/dextroamphetamine",
"ritalin": "methylphenidate",
"concerta": "methylphenidate",
"focalin": "dexmethylphenidate",
"strattera": "atomoxetine",
"viagra": "sildenafil",
"cialis": "tadalafil",
"levitra": "vardenafil",
"bactrim": "sulfamethoxazole/trimethoprim",
"keflex": "cephalexin",
"augmentin": "amoxicillin/clavulanate",
"zithromax": "azithromycin",
"levaquin": "levofloxacin",
"cipro": "ciprofloxacin",
"diflucan": "fluconazole",
"tamiflu": "oseltamivir",
"valtrex": "valacyclovir",
"zofran": "ondansetron",
"phenergan": "promethazine",
"imitrex": "sumatriptan",
"flexeril": "cyclobenzaprine",
"soma": "carisoprodol",
"valium": "diazepam",
"ativan": "lorazepam",
"klonopin": "clonazepam",
"restoril": "temazepam",
"ultram": "tramadol",
"percocet": "oxycodone/acetaminophen",
"vicodin": "hydrocodone/acetaminophen",
"oxycontin": "oxycodone",
"dilaudid": "hydromorphone",
"morphine": "ms contin",
"fentanyl": "duragesic"
}
OUTCOME_MAPPING = {
"1": "Recovered/Resolved",
"2": "Recovering/Resolving",
"3": "Not Recovered/Not Resolved",
"4": "Recovered/Resolved with Sequelae",
"5": "Fatal",
"6": "Unknown",
}
QUALIFICATION_MAPPING = {
"1": "Physician",
"2": "Pharmacist",
"3": "Other Health Professional",
"4": "Lawyer",
"5": "Consumer or Non-Health Professional",
}
SERIOUS_OUTCOME_FIELDS = [
"seriousnessdeath",
"seriousnesslifethreatening",
"seriousnesshospitalization",
"seriousnessdisabling",
"seriousnesscongenitalanomali",
"seriousnessother",
]
def get_top_adverse_events(drug_name: str, limit: int = 10, patient_sex: Optional[str] = None, age_range: Optional[Tuple[int, int]] = None) -> dict:
"""
Query OpenFDA to get the top adverse events for a given drug.
Args:
drug_name (str): The name of the drug to search for (brand or generic).
limit (int): The maximum number of adverse events to return.
patient_sex (str): The patient's sex to filter by ('1' for Male, '2' for Female).
age_range (tuple): A tuple containing min and max age, e.g., (20, 50).
Returns:
dict: The JSON response from the API, or an error dictionary.
"""
if not drug_name:
return {"error": "Drug name cannot be empty."}
drug_name_processed = drug_name.lower().strip()
drug_name_processed = DRUG_SYNONYM_MAPPING.get(drug_name_processed, drug_name_processed)
# Build the search query
search_terms = [f'patient.drug.medicinalproduct:"{drug_name_processed}"']
if patient_sex and patient_sex in ["1", "2"]:
search_terms.append(f'patient.patientsex:"{patient_sex}"')
if age_range and len(age_range) == 2:
min_age, max_age = age_range
search_terms.append(f'patient.patientonsetage:[{min_age} TO {max_age}]')
search_query = "+AND+".join(search_terms)
# Using a simple cache key that includes filters
cache_key = f"top_events_{drug_name_processed}_{limit}_{patient_sex}_{age_range}"
if cache_key in cache:
return cache[cache_key]
# Query for top events by count
count_query_url = (
f'{API_BASE_URL}?search={search_query}'
f'&count=patient.reaction.reactionmeddrapt.exact&limit={limit}'
)
try:
# Respect rate limits
time.sleep(REQUEST_DELAY_SECONDS)
response = requests.get(count_query_url)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
data = response.json()
# Query for total reports matching the filters
total_query_url = f'{API_BASE_URL}?search={search_query}'
time.sleep(REQUEST_DELAY_SECONDS)
total_response = requests.get(total_query_url)
total_response.raise_for_status()
total_data = total_response.json()
total_reports = total_data.get("meta", {},).get("results", {}).get("total", 0)
# Add total to the main data object
if 'meta' not in data:
data['meta'] = {}
data['meta']['total_reports_for_query'] = total_reports
cache[cache_key] = data
return data
except requests.exceptions.HTTPError as http_err:
if response.status_code == 404:
return {"error": f"No data found for '{drug_name}' with the specified filters. The drug may not be in the database, or there may be no reports matching the filter criteria."}
return {"error": f"HTTP error occurred: {http_err}"}
except requests.exceptions.RequestException as req_err:
return {"error": f"A network request error occurred: {req_err}"}
except Exception as e:
return {"error": f"An unexpected error occurred: {e}"}
def get_drug_event_pair_frequency(drug_name: str, event_name: str) -> dict:
"""
Query OpenFDA to get the total number of reports for a specific
drug-adverse event pair, and the total reports for the drug alone.
Args:
drug_name (str): The name of the drug.
event_name (str): The name of the adverse event.
Returns:
dict: A dictionary containing the results or an error message.
Includes `total` (for the pair) and `total_for_drug`.
"""
if not drug_name or not event_name:
return {"error": "Drug name and event name cannot be empty."}
drug_name_processed = drug_name.lower().strip()
drug_name_processed = DRUG_SYNONYM_MAPPING.get(drug_name_processed, drug_name_processed)
event_name_processed = event_name.lower().strip()
cache_key = f"pair_freq_{drug_name_processed}_{event_name_processed}"
if cache_key in cache:
return cache[cache_key]
try:
# First, get total reports for the drug to see if it exists
drug_query = f'search=patient.drug.medicinalproduct:"{drug_name_processed}"'
time.sleep(REQUEST_DELAY_SECONDS)
drug_response = requests.get(f"{API_BASE_URL}?{drug_query}")
# This is a critical failure if the drug isn't found
drug_response.raise_for_status()
drug_data = drug_response.json()
total_for_drug = drug_data.get("meta", {}).get("results", {}).get("total", 0)
# Second, get reports for the specific drug-event pair
pair_query = (
f'search=patient.drug.medicinalproduct:"{drug_name_processed}"'
f'+AND+patient.reaction.reactionmeddrapt:"{event_name_processed}"'
)
time.sleep(REQUEST_DELAY_SECONDS)
pair_response = requests.get(f"{API_BASE_URL}?{pair_query}")
total_for_pair = 0
if pair_response.status_code == 200:
pair_data = pair_response.json()
total_for_pair = pair_data.get("meta", {}).get("results", {}).get("total", 0)
# We don't raise for 404 on the pair, as it just means 0 results
elif pair_response.status_code != 404:
pair_response.raise_for_status()
# Construct a consistent response structure
data = {
"meta": {
"results": {
"total": total_for_pair,
"total_for_drug": total_for_drug
}
}
}
cache[cache_key] = data
return data
except requests.exceptions.HTTPError as http_err:
if http_err.response.status_code == 404:
return {"error": f"No data found for drug '{drug_name}'. It may be misspelled or not in the database."}
return {"error": f"HTTP error occurred: {http_err}"}
except requests.exceptions.RequestException as req_err:
return {"error": f"A network request error occurred: {req_err}"}
except Exception as e:
return {"error": f"An unexpected error occurred: {e}"}
def get_serious_outcomes(drug_name: str, limit: int = 6) -> dict:
"""
Query OpenFDA to get the most frequent serious outcomes for a given drug.
This function makes multiple API calls to count different outcome fields.
Args:
drug_name (str): The name of the drug to search for.
limit (int): The maximum number of outcomes to return.
Returns:
dict: A dictionary containing aggregated results or an error.
"""
if not drug_name:
return {"error": "Drug name cannot be empty."}
drug_name_processed = drug_name.lower().strip()
drug_name_processed = DRUG_SYNONYM_MAPPING.get(drug_name_processed, drug_name_processed)
# Use a cache key for the aggregated result
cache_key = f"serious_outcomes_aggregated_{drug_name_processed}_{limit}"
if cache_key in cache:
return cache[cache_key]
aggregated_results = {}
# Base search for all serious reports
base_search_query = f'patient.drug.medicinalproduct:"{drug_name_processed}"+AND+serious:1'
# Get total number of serious reports
total_serious_reports = 0
try:
total_query_url = f"{API_BASE_URL}?search={base_search_query}"
time.sleep(REQUEST_DELAY_SECONDS)
response = requests.get(total_query_url)
if response.status_code == 200:
total_data = response.json()
total_serious_reports = total_data.get("meta", {}).get("results", {}).get("total", 0)
elif response.status_code != 404:
# If this call fails, we can still proceed, the total will just be 0.
pass
except requests.exceptions.RequestException:
# If fetching total fails, proceed without it.
pass
for field in SERIOUS_OUTCOME_FIELDS:
try:
# Each query counts reports where the specific seriousness field exists
query = f"search={base_search_query}+AND+_exists_:{field}"
time.sleep(REQUEST_DELAY_SECONDS)
response = requests.get(f"{API_BASE_URL}?{query}")
if response.status_code == 200:
data = response.json()
total_count = data.get("meta", {}).get("results", {}).get("total", 0)
if total_count > 0:
# Use a more readable name for the outcome
outcome_name = field.replace("seriousness", "").replace("anomali", "anomaly").title()
aggregated_results[outcome_name] = total_count
# Ignore 404s, as they just mean no results for that specific outcome
elif response.status_code != 404:
response.raise_for_status()
except requests.exceptions.RequestException as e:
return {"error": f"A network request error occurred for field {field}: {e}"}
if not aggregated_results:
return {"error": f"No serious outcome data found for drug: '{drug_name}'."}
# Format the results to match the expected structure for plotting
final_data = {
"results": [{"term": k, "count": v} for k, v in aggregated_results.items()],
"meta": {"total_reports_for_query": total_serious_reports}
}
# Sort results by count, descending, and then limit
final_data["results"] = sorted(final_data["results"], key=lambda x: x['count'], reverse=True)
if limit:
final_data["results"] = final_data["results"][:limit]
cache[cache_key] = final_data
return final_data
def get_time_series_data(drug_name: str, event_name: str) -> dict:
"""
Query OpenFDA to get the time series data for a drug-event pair.
Args:
drug_name (str): The name of the drug.
event_name (str): The name of the adverse event.
Returns:
dict: The JSON response from the API, or an error dictionary.
"""
if not drug_name or not event_name:
return {"error": "Drug name and event name cannot be empty."}
drug_name_processed = drug_name.lower().strip()
drug_name_processed = DRUG_SYNONYM_MAPPING.get(drug_name_processed, drug_name_processed)
event_name_processed = event_name.lower().strip()
cache_key = f"time_series_{drug_name_processed}_{event_name_processed}"
if cache_key in cache:
return cache[cache_key]
query = (
f'search=patient.drug.medicinalproduct:"{drug_name_processed}"'
f'+AND+patient.reaction.reactionmeddrapt:"{event_name_processed}"'
f'&count=receiptdate'
)
try:
time.sleep(REQUEST_DELAY_SECONDS)
response = requests.get(f"{API_BASE_URL}?{query}")
response.raise_for_status()
data = response.json()
cache[cache_key] = data
return data
except requests.exceptions.HTTPError as http_err:
if response.status_code == 404:
return {"error": f"No data found for drug '{drug_name}' and event '{event_name}'. They may be misspelled or not in the database."}
return {"error": f"HTTP error occurred: {http_err}"}
except requests.exceptions.RequestException as req_err:
return {"error": f"A network request error occurred: {req_err}"}
except Exception as e:
return {"error": f"An unexpected error occurred: {e}"}
def get_report_source_data(drug_name: str, limit: int = 5) -> dict:
"""
Query OpenFDA to get the breakdown of report sources for a given drug.
Args:
drug_name (str): The name of the drug to search for.
limit (int): The maximum number of sources to return.
Returns:
dict: The JSON response from the API, or an error dictionary.
"""
if not drug_name:
return {"error": "Drug name cannot be empty."}
drug_name_processed = drug_name.lower().strip()
drug_name_processed = DRUG_SYNONYM_MAPPING.get(drug_name_processed, drug_name_processed)
cache_key = f"report_source_{drug_name_processed}_{limit}"
if cache_key in cache:
return cache[cache_key]
query = (
f'search=patient.drug.medicinalproduct:"{drug_name_processed}"'
f'&count=primarysource.qualification'
)
try:
time.sleep(REQUEST_DELAY_SECONDS)
response = requests.get(f"{API_BASE_URL}?{query}")
response.raise_for_status()
data = response.json()
# Translate the qualification codes and calculate total before limiting
if "results" in data:
# Sort by count first
data['results'] = sorted(data['results'], key=lambda x: x['count'], reverse=True)
# Calculate total from all results before limiting
total_with_source = sum(item['count'] for item in data['results'])
if 'meta' not in data:
data['meta'] = {}
data['meta']['total_reports_for_query'] = total_with_source
# Translate codes after processing
for item in data["results"]:
term_str = str(item["term"])
item["term"] = QUALIFICATION_MAPPING.get(term_str, f"Unknown ({term_str})")
# Apply limit
if limit:
data['results'] = data['results'][:limit]
cache[cache_key] = data
return data
except requests.exceptions.HTTPError as http_err:
if response.status_code == 404:
return {"error": f"No data found for drug: '{drug_name}'."}
return {"error": f"HTTP error occurred: {http_err}"}
except requests.exceptions.RequestException as req_err:
return {"error": f"A network request error occurred: {req_err}"}
except Exception as e:
return {"error": f"An unexpected error occurred: {e}"} |