File size: 6,018 Bytes
dd19932
 
2262f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd19932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd19932
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import plotly.graph_objects as go
import pandas as pd
from typing import Dict, Any, Optional

def create_placeholder_chart(message: str) -> go.Figure:
    """
    Creates a placeholder chart with a text message.

    Args:
        message (str): The message to display on the chart.

    Returns:
        go.Figure: A Plotly figure object with the message.
    """
    fig = go.Figure()
    fig.add_annotation(
        text=message,
        xref="paper",
        yref="paper",
        showarrow=False,
        font=dict(size=16)
    )
    fig.update_layout(
        xaxis=dict(showgrid=False, zeroline=False, visible=False),
        yaxis=dict(showgrid=False, zeroline=False, visible=False),
        plot_bgcolor="rgba(0,0,0,0)",
        paper_bgcolor="rgba(0,0,0,0)",
    )
    return fig

def create_bar_chart(data: dict, drug_name: str):
    """
    Creates a Plotly bar chart from the OpenFDA data.

    Args:
        data (dict): The data from the OpenFDA client.
        drug_name (str): The name of the drug.

    Returns:
        A Plotly Figure object if data is valid, otherwise None.
    """
    if "error" in data or "results" not in data or not data["results"]:
        return None

    try:
        df = pd.DataFrame(data["results"])
        df = df.rename(columns={"term": "Adverse Event", "count": "Report Count"})
        
        # Ensure 'Report Count' is numeric
        df['Report Count'] = pd.to_numeric(df['Report Count'])

        # Sort for better visualization
        df = df.sort_values(by="Report Count", ascending=True)

        fig = go.Figure(
            go.Bar(
                x=df["Report Count"],
                y=df["Adverse Event"],
                orientation='h',
                marker=dict(color='skyblue')
            )
        )

        fig.update_layout(
            title_text=f"Top Reported Adverse Events for {drug_name.title()}",
            xaxis_title="Number of Reports",
            yaxis_title="Adverse Event",
            yaxis=dict(automargin=True),
            height=max(400, len(df) * 30) # Dynamically adjust height
        )

        return fig
    except Exception:
        return None

def create_outcome_chart(data: dict, drug_name: str):
    """
    Creates a Plotly bar chart for serious outcomes from OpenFDA data.

    Args:
        data (dict): The data from the OpenFDA client.
        drug_name (str): The name of the drug.

    Returns:
        A Plotly Figure object if data is valid, otherwise None.
    """
    if "error" in data or "results" not in data or not data["results"]:
        return None

    try:
        df = pd.DataFrame(data["results"])
        df = df.rename(columns={"term": "Serious Outcome", "count": "Report Count"})
        
        df['Report Count'] = pd.to_numeric(df['Report Count'])
        df = df.sort_values(by="Report Count", ascending=True)

        fig = go.Figure(
            go.Bar(
                x=df["Report Count"],
                y=df["Serious Outcome"],
                orientation='h',
                marker=dict(color='crimson') # Different color for distinction
            )
        )

        fig.update_layout(
            title_text=f"Top Serious Outcomes for {drug_name.title()}",
            xaxis_title="Number of Reports",
            yaxis_title="Serious Outcome",
            yaxis=dict(automargin=True),
            height=max(400, len(df) * 40)
        )

        return fig
    except Exception:
        return None

def create_time_series_chart(data: dict, drug_name: str, event_name: str, time_aggregation: str = 'Y'):
    """
    Creates a Plotly time-series chart from OpenFDA data.

    Args:
        data (dict): The data from the OpenFDA client.
        drug_name (str): The name of the drug.
        event_name (str): The name of the adverse event.
        time_aggregation (str): The time unit for aggregation ('Y' for year, 'Q' for quarter).

    Returns:
        A Plotly Figure object if data is valid, otherwise None.
    """
    if "error" in data or "results" not in data or not data["results"]:
        return None

    try:
        df = pd.DataFrame(data["results"])
        df['time'] = pd.to_datetime(df['time'], format='%Y%m%d')
        
        # Resample data
        df = df.set_index('time').resample(time_aggregation)['count'].sum().reset_index()
        
        aggregation_label = "Year" if time_aggregation == 'Y' else "Quarter"

        fig = go.Figure(
            go.Scatter(
                x=df["time"],
                y=df["count"],
                mode='lines+markers',
                line=dict(color='royalblue'),
            )
        )

        fig.update_layout(
            title_text=f"Report Trend for {drug_name.title()} and {event_name.title()}",
            xaxis_title=f"Report {aggregation_label}",
            yaxis_title="Number of Reports",
            yaxis=dict(automargin=True),
        )

        return fig
    except Exception as e:
        print(f"Error creating time-series chart: {e}")
        return None

def create_pie_chart(data: dict, drug_name: str):
    """
    Creates a Plotly pie chart for report source breakdown.

    Args:
        data (dict): The data from the OpenFDA client.
        drug_name (str): The name of the drug.

    Returns:
        A Plotly Figure object if data is valid, otherwise None.
    """
    if "error" in data or "results" not in data or not data["results"]:
        return None

    try:
        df = pd.DataFrame(data["results"])
        df = df.rename(columns={"term": "Source", "count": "Count"})

        fig = go.Figure(
            go.Pie(
                labels=df["Source"],
                values=df["Count"],
                hole=.3,
                pull=[0.05] * len(df) # Explode slices slightly
            )
        )

        fig.update_layout(
            title_text=f"Report Sources for {drug_name.title()}",
            showlegend=True
        )

        return fig
    except Exception as e:
        print(f"Error creating pie chart: {e}")
        return None