Spaces:
Runtime error
Runtime error
Updated with 16 bit instead of 32 bit params
Browse files
app.py
CHANGED
|
@@ -4,10 +4,11 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import torch
|
|
|
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
| 10 |
-
# Allow CORS
|
| 11 |
app.add_middleware(
|
| 12 |
CORSMiddleware,
|
| 13 |
allow_origins=["*"],
|
|
@@ -16,44 +17,56 @@ app.add_middleware(
|
|
| 16 |
allow_headers=["*"],
|
| 17 |
)
|
| 18 |
|
| 19 |
-
#
|
|
|
|
|
|
|
|
|
|
| 20 |
adapter_path = "imnim/multi-label-email-classifier"
|
| 21 |
|
| 22 |
try:
|
| 23 |
-
# Load PEFT config
|
| 24 |
-
peft_config = PeftConfig.from_pretrained(adapter_path,
|
| 25 |
-
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
peft_config.base_model_name_or_path,
|
| 35 |
-
|
| 36 |
)
|
| 37 |
|
| 38 |
-
# Load adapter
|
| 39 |
model = PeftModel.from_pretrained(
|
| 40 |
-
base_model,
|
| 41 |
-
|
| 42 |
-
|
| 43 |
)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer
|
| 47 |
|
| 48 |
except Exception as e:
|
| 49 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
| 50 |
|
| 51 |
-
# Request
|
| 52 |
class EmailInput(BaseModel):
|
| 53 |
subject: str
|
| 54 |
body: str
|
| 55 |
|
| 56 |
-
#
|
| 57 |
@app.post("/classify")
|
| 58 |
async def classify_email(data: EmailInput):
|
| 59 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
|
|
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import torch
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
+
# Allow CORS (customize in production)
|
| 12 |
app.add_middleware(
|
| 13 |
CORSMiddleware,
|
| 14 |
allow_origins=["*"],
|
|
|
|
| 17 |
allow_headers=["*"],
|
| 18 |
)
|
| 19 |
|
| 20 |
+
# Hugging Face access token (from env)
|
| 21 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 22 |
+
|
| 23 |
+
# HF model repo (includes adapter + full model)
|
| 24 |
adapter_path = "imnim/multi-label-email-classifier"
|
| 25 |
|
| 26 |
try:
|
| 27 |
+
# Load PEFT adapter config
|
| 28 |
+
peft_config = PeftConfig.from_pretrained(adapter_path, token=hf_token)
|
| 29 |
+
|
| 30 |
+
# Try loading in bfloat16, fallback to float32
|
| 31 |
+
try:
|
| 32 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
+
peft_config.base_model_name_or_path,
|
| 34 |
+
torch_dtype=torch.bfloat16,
|
| 35 |
+
device_map="auto",
|
| 36 |
+
token=hf_token
|
| 37 |
+
)
|
| 38 |
+
except Exception:
|
| 39 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
+
peft_config.base_model_name_or_path,
|
| 41 |
+
torch_dtype=torch.float32,
|
| 42 |
+
device_map="auto",
|
| 43 |
+
token=hf_token
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 47 |
peft_config.base_model_name_or_path,
|
| 48 |
+
token=hf_token
|
| 49 |
)
|
| 50 |
|
| 51 |
+
# Load the adapter
|
| 52 |
model = PeftModel.from_pretrained(
|
| 53 |
+
base_model,
|
| 54 |
+
adapter_path,
|
| 55 |
+
token=hf_token
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# Create the pipeline — no device argument (handled by accelerate)
|
| 59 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 60 |
|
| 61 |
except Exception as e:
|
| 62 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
| 63 |
|
| 64 |
+
# === Request Schema ===
|
| 65 |
class EmailInput(BaseModel):
|
| 66 |
subject: str
|
| 67 |
body: str
|
| 68 |
|
| 69 |
+
# === Endpoint ===
|
| 70 |
@app.post("/classify")
|
| 71 |
async def classify_email(data: EmailInput):
|
| 72 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|