Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,88 +1,54 @@
|
|
| 1 |
-
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import torch
|
| 7 |
import os
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Allow CORS (customize in production)
|
| 12 |
-
app.add_middleware(
|
| 13 |
-
CORSMiddleware,
|
| 14 |
-
allow_origins=["*"],
|
| 15 |
-
allow_credentials=True,
|
| 16 |
-
allow_methods=["*"],
|
| 17 |
-
allow_headers=["*"],
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
# Hugging Face access token (from env)
|
| 21 |
hf_token = os.getenv("HF_TOKEN")
|
| 22 |
|
| 23 |
-
# HF model repo (includes adapter + full model)
|
| 24 |
adapter_path = "imnim/multi-label-email-classifier"
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
peft_config = PeftConfig.from_pretrained(adapter_path, token=hf_token)
|
| 29 |
-
|
| 30 |
-
# Try loading in bfloat16, fallback to float32
|
| 31 |
-
try:
|
| 32 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
-
peft_config.base_model_name_or_path,
|
| 34 |
-
torch_dtype=torch.bfloat16,
|
| 35 |
-
device_map="auto",
|
| 36 |
-
token=hf_token
|
| 37 |
-
)
|
| 38 |
-
except Exception:
|
| 39 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
-
peft_config.base_model_name_or_path,
|
| 41 |
-
torch_dtype=torch.float32,
|
| 42 |
-
device_map="auto",
|
| 43 |
-
token=hf_token
|
| 44 |
-
)
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
peft_config.base_model_name_or_path,
|
|
|
|
|
|
|
| 48 |
token=hf_token
|
| 49 |
)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
token=hf_token
|
| 56 |
)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 60 |
-
|
| 61 |
-
except Exception as e:
|
| 62 |
-
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
| 63 |
|
| 64 |
-
|
| 65 |
-
class EmailInput(BaseModel):
|
| 66 |
-
subject: str
|
| 67 |
-
body: str
|
| 68 |
|
| 69 |
-
|
| 70 |
-
@app.post("/classify")
|
| 71 |
-
async def classify_email(data: EmailInput):
|
| 72 |
-
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
| 73 |
-
try:
|
| 74 |
-
result = pipe(prompt, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95)
|
| 75 |
-
full_text = result[0]["generated_text"]
|
| 76 |
-
label_section = full_text.split("### Labels:")[1].strip()
|
| 77 |
-
return {"label": label_section}
|
| 78 |
-
except Exception as e:
|
| 79 |
-
raise HTTPException(status_code=500, detail=f"Model inference failed: {str(e)}")
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
import uvicorn
|
| 85 |
-
|
| 86 |
-
if __name__ == "__main__":
|
| 87 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")
|
| 88 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
from peft import PeftModel, PeftConfig
|
|
|
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
|
| 7 |
+
# Hugging Face access token (stored in HF Spaces secrets)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
hf_token = os.getenv("HF_TOKEN")
|
| 9 |
|
|
|
|
| 10 |
adapter_path = "imnim/multi-label-email-classifier"
|
| 11 |
|
| 12 |
+
# Load PEFT config
|
| 13 |
+
peft_config = PeftConfig.from_pretrained(adapter_path, token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Load base model (fallback to float32 if bfloat16 fails)
|
| 16 |
+
try:
|
| 17 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
peft_config.base_model_name_or_path,
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
device_map="auto",
|
| 21 |
token=hf_token
|
| 22 |
)
|
| 23 |
+
except:
|
| 24 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
+
peft_config.base_model_name_or_path,
|
| 26 |
+
torch_dtype=torch.float32,
|
| 27 |
+
device_map="auto",
|
| 28 |
token=hf_token
|
| 29 |
)
|
| 30 |
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path, token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
model = PeftModel.from_pretrained(base_model, adapter_path, token=hf_token)
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Define classification function
|
| 38 |
+
def classify_email(subject, body):
|
| 39 |
+
prompt = f"""### Subject:\n{subject}\n\n### Body:\n{body}\n\n### Labels:"""
|
| 40 |
+
result = pipe(prompt, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95)
|
| 41 |
+
full_text = result[0]["generated_text"]
|
| 42 |
+
label_section = full_text.split("### Labels:")[1].strip()
|
| 43 |
+
return label_section
|
| 44 |
|
| 45 |
+
# Gradio UI
|
| 46 |
+
demo = gr.Interface(
|
| 47 |
+
fn=classify_email,
|
| 48 |
+
inputs=["text", "text"],
|
| 49 |
+
outputs="text",
|
| 50 |
+
title="Multi-label Email Classifier",
|
| 51 |
+
description="Enter subject and body to get label prediction"
|
| 52 |
+
)
|
| 53 |
|
| 54 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|