Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,51 +4,56 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import torch
|
| 7 |
-
from dotenv import load_dotenv
|
| 8 |
-
import os
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
load_dotenv()
|
| 12 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 13 |
-
|
| 14 |
|
| 15 |
app = FastAPI()
|
| 16 |
|
|
|
|
| 17 |
app.add_middleware(
|
| 18 |
CORSMiddleware,
|
| 19 |
-
allow_origins=["*"],
|
| 20 |
allow_credentials=True,
|
| 21 |
allow_methods=["*"],
|
| 22 |
allow_headers=["*"],
|
| 23 |
)
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
try:
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
peft_config.base_model_name_or_path,
|
| 33 |
torch_dtype=torch.float32,
|
| 34 |
-
device_map={"": "cpu"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
)
|
| 36 |
-
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
except Exception as e:
|
| 44 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
| 45 |
|
| 46 |
-
#
|
| 47 |
class EmailInput(BaseModel):
|
| 48 |
subject: str
|
| 49 |
body: str
|
| 50 |
|
| 51 |
-
#
|
| 52 |
@app.post("/classify")
|
| 53 |
async def classify_email(data: EmailInput):
|
| 54 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
|
|
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
| 10 |
+
# Allow CORS for all origins (adjust this in production)
|
| 11 |
app.add_middleware(
|
| 12 |
CORSMiddleware,
|
| 13 |
+
allow_origins=["*"],
|
| 14 |
allow_credentials=True,
|
| 15 |
allow_methods=["*"],
|
| 16 |
allow_headers=["*"],
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# Path to your HF Hub repo with full model + adapter
|
| 20 |
+
adapter_path = "imnim/multi-label-email-classifier"
|
| 21 |
|
| 22 |
try:
|
| 23 |
+
# Load PEFT config to get base model path
|
| 24 |
+
peft_config = PeftConfig.from_pretrained(adapter_path, use_auth_token=True)
|
| 25 |
+
|
| 26 |
+
# Load base model and tokenizer with HF auth token
|
| 27 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
peft_config.base_model_name_or_path,
|
| 29 |
torch_dtype=torch.float32,
|
| 30 |
+
device_map={"": "cpu"},
|
| 31 |
+
use_auth_token=True
|
| 32 |
+
)
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
+
peft_config.base_model_name_or_path,
|
| 35 |
+
use_auth_token=True
|
| 36 |
)
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Load adapter with HF auth token
|
| 39 |
+
model = PeftModel.from_pretrained(
|
| 40 |
+
base_model, adapter_path,
|
| 41 |
+
device_map={"": "cpu"},
|
| 42 |
+
use_auth_token=True
|
| 43 |
+
)
|
| 44 |
|
| 45 |
+
# Setup text-generation pipeline
|
| 46 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1)
|
| 47 |
|
| 48 |
except Exception as e:
|
| 49 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
| 50 |
|
| 51 |
+
# Request schema
|
| 52 |
class EmailInput(BaseModel):
|
| 53 |
subject: str
|
| 54 |
body: str
|
| 55 |
|
| 56 |
+
# POST /classify endpoint
|
| 57 |
@app.post("/classify")
|
| 58 |
async def classify_email(data: EmailInput):
|
| 59 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|