import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from diffusers.utils import export_to_video import gradio as gr # Load the DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() def generate_video(prompt): video_frames = pipe(prompt, num_inference_steps=25).frames video_path = export_to_video(video_frames[0]) return video_path # Create the Gradio Interface interface = gr.Interface( fn=generate_video, inputs=gr.Textbox(label="Enter your prompt"), outputs=gr.Video(label="Generated Video"), title="Text-to-Video Generator", description="Enter a prompt to generate a video using diffusion models." ) # Launch the Gradio app interface.launch()