inoculatemedia commited on
Commit
9163b23
·
verified ·
1 Parent(s): fa434a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -91
app.py CHANGED
@@ -17,12 +17,12 @@ def get_client(space_id: str) -> Client:
17
 
18
 
19
  @mcp.tool()
20
- async def generate_image(prompt: str, space_id: str = "ysharma/SanaSprint") -> str:
21
  """Generate an image using Flux.
22
 
23
  Args:
24
  prompt: Text prompt describing the image to generate
25
- space_id: HuggingFace Space ID to use
26
  """
27
  client = get_client(space_id)
28
  result = client.predict(
@@ -37,92 +37,3 @@ async def generate_image(prompt: str, space_id: str = "ysharma/SanaSprint") -> s
37
  api_name="/infer"
38
  )
39
  return result
40
-
41
-
42
- @mcp.tool()
43
- async def run_dia_tts(prompt: str, space_id: str = "ysharma/Dia-1.6B") -> str:
44
- """Text-to-Speech Synthesis.
45
-
46
- Args:
47
- prompt: Text prompt describing the conversation between speakers S1, S2
48
- space_id: HuggingFace Space ID to use
49
- """
50
- client = get_client(space_id)
51
- result = client.predict(
52
- text_input=f"""{prompt}""",
53
- audio_prompt_input=None,
54
- max_new_tokens=3072,
55
- cfg_scale=3,
56
- temperature=1.3,
57
- top_p=0.95,
58
- cfg_filter_top_k=30,
59
- speed_factor=0.94,
60
- api_name="/generate_audio"
61
- )
62
- return result
63
-
64
-
65
-
66
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
67
-
68
-
69
- def respond(
70
- message,
71
- history: list[tuple[str, str]],
72
- system_message,
73
- max_tokens,
74
- temperature,
75
- top_p,
76
- ):
77
- messages = [{"role": "system", "content": system_message}]
78
-
79
- for val in history:
80
- if val[0]:
81
- messages.append({"role": "user", "content": val[0]})
82
- if val[1]:
83
- messages.append({"role": "assistant", "content": val[1]})
84
-
85
- messages.append({"role": "user", "content": message})
86
-
87
- response = ""
88
-
89
- for message in client.chat_completion(
90
- messages,
91
- max_tokens=max_tokens,
92
- stream=True,
93
- temperature=temperature,
94
- top_p=top_p,
95
- ):
96
- token = message.choices[0].delta.content
97
-
98
- response += token
99
- yield response
100
-
101
-
102
- """
103
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
104
- """
105
- demo = gr.ChatInterface(
106
- respond,
107
- additional_inputs=[
108
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
109
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
110
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
111
- gr.Slider(
112
- minimum=0.1,
113
- maximum=1.0,
114
- value=0.95,
115
- step=0.05,
116
- label="Top-p (nucleus sampling)",
117
- ),
118
- ],
119
- )
120
-
121
-
122
- if __name__ == "__main__":
123
- import sys
124
- import io
125
- sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
126
-
127
- mcp.run(transport='stdio')
128
- demo.launch()
 
17
 
18
 
19
  @mcp.tool()
20
+ async def generate_image(prompt: str, space_id: str = "inoculatemedia/FramePack-F1") -> str:
21
  """Generate an image using Flux.
22
 
23
  Args:
24
  prompt: Text prompt describing the image to generate
25
+ space_id: inoculatemedia/FramePack-F1
26
  """
27
  client = get_client(space_id)
28
  result = client.predict(
 
37
  api_name="/infer"
38
  )
39
  return result