Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from torch.nn import functional as F | |
import warnings | |
import _thread | |
import skvideo.io | |
from queue import Queue, Empty | |
from model.pytorch_msssim import ssim_matlab | |
warnings.filterwarnings("ignore") | |
def transferAudio(sourceVideo, targetVideo): | |
import shutil | |
import moviepy.editor | |
tempAudioFileName = "./temp/audio.mkv" | |
# split audio from original video file and store in "temp" directory | |
if True: | |
# clear old "temp" directory if it exits | |
if os.path.isdir("temp"): | |
# remove temp directory | |
shutil.rmtree("temp") | |
# create new "temp" directory | |
os.makedirs("temp") | |
# extract audio from video | |
os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName)) | |
targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1] | |
os.rename(targetVideo, targetNoAudio) | |
# combine audio file and new video file | |
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) | |
if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac | |
tempAudioFileName = "./temp/audio.m4a" | |
os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName)) | |
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) | |
if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format | |
os.rename(targetNoAudio, targetVideo) | |
print("Audio transfer failed. Interpolated video will have no audio") | |
else: | |
print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.") | |
# remove audio-less video | |
os.remove(targetNoAudio) | |
else: | |
os.remove(targetNoAudio) | |
# remove temp directory | |
shutil.rmtree("temp") | |
def process_video(video, output, modelDir, fp16, UHD, scale, skip, fps, png, ext, exp, multi): | |
if exp != 1: | |
multi = (2 ** exp) | |
assert (not video is None) | |
if skip: | |
print("skip flag is abandoned, please refer to issue #207.") | |
if UHD and scale==1.0: | |
scale = 0.5 | |
assert scale in [0.25, 0.5, 1.0, 2.0, 4.0] | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch.set_grad_enabled(False) | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
if(fp16): | |
torch.set_default_tensor_type(torch.cuda.HalfTensor) | |
from rife.train_log.RIFE_HDv3 import Model | |
model = Model() | |
if not hasattr(model, 'version'): | |
model.version = 0 | |
model.load_model(modelDir, -1) | |
print("Loaded 3.x/4.x HD model.") | |
model.eval() | |
model.device() | |
videoCapture = cv2.VideoCapture(video) | |
fps_in = videoCapture.get(cv2.CAP_PROP_FPS) | |
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) | |
videoCapture.release() | |
if fps is None: | |
fpsNotAssigned = True | |
fps_out = fps_in * multi | |
else: | |
fpsNotAssigned = False | |
fps_out = fps | |
videogen = skvideo.io.vreader(video) | |
lastframe = next(videogen) | |
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | |
video_path_wo_ext, video_ext = os.path.splitext(video) | |
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, ext, tot_frame, fps_in, fps_out)) | |
if png == False and fpsNotAssigned == True: | |
print("The audio will be merged after interpolation process") | |
else: | |
print("Will not merge audio because using png or fps flag!") | |
h, w, _ = lastframe.shape | |
vid_out_name = None | |
vid_out = None | |
if png: | |
if not os.path.exists('vid_out'): | |
os.mkdir('vid_out') | |
else: | |
if output is not None: | |
vid_out_name = output | |
else: | |
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, multi, int(np.round(fps_out)), ext) | |
vid_out = cv2.VideoWriter(vid_out_name, fourcc, fps_out, (w, h)) | |
def clear_write_buffer(user_args, write_buffer): | |
cnt = 0 | |
while True: | |
item = write_buffer.get() | |
if item is None: | |
break | |
if user_args.png: | |
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) | |
cnt += 1 | |
else: | |
vid_out.write(item[:, :, ::-1]) | |
def build_read_buffer(user_args, read_buffer, videogen): | |
try: | |
for frame in videogen: | |
read_buffer.put(frame) | |
except: | |
pass | |
read_buffer.put(None) | |
def make_inference(I0, I1, n): | |
if model.version >= 3.9: | |
res = [] | |
for i in range(n): | |
res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), scale)) | |
return res | |
else: | |
middle = model.inference(I0, I1, scale) | |
if n == 1: | |
return [middle] | |
first_half = make_inference(I0, middle, n=n//2) | |
second_half = make_inference(middle, I1, n=n//2) | |
if n%2: | |
return [*first_half, middle, *second_half] | |
else: | |
return [*first_half, *second_half] | |
def pad_image(img): | |
if(fp16): | |
return F.pad(img, padding).half() | |
else: | |
return F.pad(img, padding) | |
tmp = max(128, int(128 / scale)) | |
ph = ((h - 1) // tmp + 1) * tmp | |
pw = ((w - 1) // tmp + 1) * tmp | |
padding = (0, pw - w, 0, ph - h) | |
pbar = tqdm(total=tot_frame) | |
write_buffer = Queue(maxsize=500) | |
read_buffer = Queue(maxsize=500) | |
_thread.start_new_thread(build_read_buffer, ((), read_buffer, videogen)) | |
_thread.start_new_thread(clear_write_buffer, ((), write_buffer)) | |
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = pad_image(I1) | |
temp = None # save lastframe when processing static frame | |
while True: | |
if temp is not None: | |
frame = temp | |
temp = None | |
else: | |
frame = read_buffer.get() | |
if frame is None: | |
break | |
I0 = I1 | |
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = pad_image(I1) | |
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) | |
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
break_flag = False | |
if ssim > 0.996: | |
frame = read_buffer.get() # read a new frame | |
if frame is None: | |
break_flag = True | |
frame = lastframe | |
else: | |
temp = frame | |
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = pad_image(I1) | |
I1 = model.inference(I0, I1, scale=scale) | |
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w] | |
if ssim < 0.2: | |
output = [] | |
for i in range(multi - 1): | |
output.append(I0) | |
else: | |
output = make_inference(I0, I1, multi - 1) | |
write_buffer.put(lastframe) | |
for mid in output: | |
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) | |
write_buffer.put(mid[:h, :w]) | |
pbar.update(1) | |
lastframe = frame | |
if break_flag: | |
break | |
write_buffer.put(lastframe) | |
write_buffer.put(None) | |
import time | |
while(not write_buffer.empty()): | |
time.sleep(0.1) | |
pbar.close() | |
if not vid_out is None: | |
vid_out.release() | |
if png == False and fpsNotAssigned == True and not video is None: | |
try: | |
transferAudio(video, vid_out_name) | |
except: | |
print("Audio transfer failed. Interpolated video will have no audio") | |
targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1] | |
os.rename(targetNoAudio, vid_out_name) | |
return vid_out_name | |