import os import cv2 import torch import numpy as np from tqdm import tqdm from torch.nn import functional as F import warnings import _thread import skvideo.io from queue import Queue, Empty from model.pytorch_msssim import ssim_matlab warnings.filterwarnings("ignore") def transferAudio(sourceVideo, targetVideo): import shutil import moviepy.editor tempAudioFileName = "./temp/audio.mkv" # split audio from original video file and store in "temp" directory if True: # clear old "temp" directory if it exits if os.path.isdir("temp"): # remove temp directory shutil.rmtree("temp") # create new "temp" directory os.makedirs("temp") # extract audio from video os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName)) targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1] os.rename(targetVideo, targetNoAudio) # combine audio file and new video file os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac tempAudioFileName = "./temp/audio.m4a" os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName)) os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format os.rename(targetNoAudio, targetVideo) print("Audio transfer failed. Interpolated video will have no audio") else: print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.") # remove audio-less video os.remove(targetNoAudio) else: os.remove(targetNoAudio) # remove temp directory shutil.rmtree("temp") def process_video(video, output, modelDir, fp16, UHD, scale, skip, fps, png, ext, exp, multi): if exp != 1: multi = (2 ** exp) assert (not video is None) if skip: print("skip flag is abandoned, please refer to issue #207.") if UHD and scale==1.0: scale = 0.5 assert scale in [0.25, 0.5, 1.0, 2.0, 4.0] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_grad_enabled(False) if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True if(fp16): torch.set_default_tensor_type(torch.cuda.HalfTensor) from rife.train_log.RIFE_HDv3 import Model model = Model() if not hasattr(model, 'version'): model.version = 0 model.load_model(modelDir, -1) print("Loaded 3.x/4.x HD model.") model.eval() model.device() videoCapture = cv2.VideoCapture(video) fps_in = videoCapture.get(cv2.CAP_PROP_FPS) tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) videoCapture.release() if fps is None: fpsNotAssigned = True fps_out = fps_in * multi else: fpsNotAssigned = False fps_out = fps videogen = skvideo.io.vreader(video) lastframe = next(videogen) fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') video_path_wo_ext, video_ext = os.path.splitext(video) print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, ext, tot_frame, fps_in, fps_out)) if png == False and fpsNotAssigned == True: print("The audio will be merged after interpolation process") else: print("Will not merge audio because using png or fps flag!") h, w, _ = lastframe.shape vid_out_name = None vid_out = None if png: if not os.path.exists('vid_out'): os.mkdir('vid_out') else: if output is not None: vid_out_name = output else: vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, multi, int(np.round(fps_out)), ext) vid_out = cv2.VideoWriter(vid_out_name, fourcc, fps_out, (w, h)) def clear_write_buffer(user_args, write_buffer): cnt = 0 while True: item = write_buffer.get() if item is None: break if user_args.png: cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) cnt += 1 else: vid_out.write(item[:, :, ::-1]) def build_read_buffer(user_args, read_buffer, videogen): try: for frame in videogen: read_buffer.put(frame) except: pass read_buffer.put(None) def make_inference(I0, I1, n): if model.version >= 3.9: res = [] for i in range(n): res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), scale)) return res else: middle = model.inference(I0, I1, scale) if n == 1: return [middle] first_half = make_inference(I0, middle, n=n//2) second_half = make_inference(middle, I1, n=n//2) if n%2: return [*first_half, middle, *second_half] else: return [*first_half, *second_half] def pad_image(img): if(fp16): return F.pad(img, padding).half() else: return F.pad(img, padding) tmp = max(128, int(128 / scale)) ph = ((h - 1) // tmp + 1) * tmp pw = ((w - 1) // tmp + 1) * tmp padding = (0, pw - w, 0, ph - h) pbar = tqdm(total=tot_frame) write_buffer = Queue(maxsize=500) read_buffer = Queue(maxsize=500) _thread.start_new_thread(build_read_buffer, ((), read_buffer, videogen)) _thread.start_new_thread(clear_write_buffer, ((), write_buffer)) I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. I1 = pad_image(I1) temp = None # save lastframe when processing static frame while True: if temp is not None: frame = temp temp = None else: frame = read_buffer.get() if frame is None: break I0 = I1 I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. I1 = pad_image(I1) I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) break_flag = False if ssim > 0.996: frame = read_buffer.get() # read a new frame if frame is None: break_flag = True frame = lastframe else: temp = frame I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. I1 = pad_image(I1) I1 = model.inference(I0, I1, scale=scale) I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w] if ssim < 0.2: output = [] for i in range(multi - 1): output.append(I0) else: output = make_inference(I0, I1, multi - 1) write_buffer.put(lastframe) for mid in output: mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) write_buffer.put(mid[:h, :w]) pbar.update(1) lastframe = frame if break_flag: break write_buffer.put(lastframe) write_buffer.put(None) import time while(not write_buffer.empty()): time.sleep(0.1) pbar.close() if not vid_out is None: vid_out.release() if png == False and fpsNotAssigned == True and not video is None: try: transferAudio(video, vid_out_name) except: print("Audio transfer failed. Interpolated video will have no audio") targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1] os.rename(targetNoAudio, vid_out_name) return vid_out_name