File size: 12,577 Bytes
a7161e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import gradio as gr
import numpy as np
from PIL import Image, ImageFilter
import cv2
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
import warnings
warnings.filterwarnings("ignore")

# ZeroGPU decorator (if available)
try:
    import spaces
    HAS_ZEROGPU = True
except ImportError:
    HAS_ZEROGPU = False
    # Create a dummy decorator if spaces is not available
    def spaces_gpu(func):
        return func
    spaces = type('spaces', (), {'GPU': spaces_gpu})()

# VAAPI acceleration check
def check_vaapi_support():
    """Check if VAAPI is available for hardware acceleration"""
    try:
        # Check if VAAPI devices are available
        vaapi_devices = [f for f in os.listdir('/dev/dri') if f.startswith('render')]
        return len(vaapi_devices) > 0
    except:
        return False

HAS_VAAPI = check_vaapi_support()

class TorchUpscaler:
    """PyTorch-based upscaler that can use GPU acceleration"""
    
    def __init__(self, device='auto'):
        if device == 'auto':
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = torch.device(device)
        
        print(f"Using device: {self.device}")
    
    def bicubic_torch(self, image_tensor, scale_factor):
        """GPU-accelerated bicubic upscaling using PyTorch"""
        return F.interpolate(
            image_tensor, 
            scale_factor=scale_factor, 
            mode='bicubic', 
            align_corners=False,
            antialias=True
        )
    
    def lanczos_torch(self, image_tensor, scale_factor):
        """GPU-accelerated Lanczos-style upscaling"""
        # PyTorch doesn't have native Lanczos, use bicubic with antialiasing
        return F.interpolate(
            image_tensor,
            scale_factor=scale_factor,
            mode='bicubic',
            align_corners=False,
            antialias=True
        )
    
    def esrgan_style_upscale(self, image_tensor, scale_factor):
        """Simple ESRGAN-style upscaling using convolutions"""
        # This is a simplified version - in practice you'd load a pre-trained model
        b, c, h, w = image_tensor.shape
        
        # Simple upscaling with edge enhancement
        upscaled = F.interpolate(image_tensor, scale_factor=scale_factor, mode='bicubic', align_corners=False)
        
        # Apply a simple sharpening kernel
        kernel = torch.tensor([[[[-1, -1, -1],
                                [-1,  9, -1],
                                [-1, -1, -1]]]], dtype=torch.float32, device=self.device)
        kernel = kernel.repeat(c, 1, 1, 1)
        
        # Apply convolution for sharpening
        sharpened = F.conv2d(upscaled, kernel, padding=1, groups=c)
        
        # Blend original and sharpened
        result = 0.8 * upscaled + 0.2 * sharpened
        return torch.clamp(result, 0, 1)

class VAAPIUpscaler:
    """VAAPI hardware-accelerated upscaler"""
    
    def __init__(self):
        self.vaapi_available = HAS_VAAPI
        if self.vaapi_available:
            print("VAAPI hardware acceleration available")
        else:
            print("VAAPI hardware acceleration not available")
    
    def upscale_vaapi(self, image_array, scale_factor, method):
        """Use VAAPI for hardware-accelerated upscaling"""
        if not self.vaapi_available:
            return None
        
        try:
            h, w = image_array.shape[:2]
            new_h, new_w = int(h * scale_factor), int(w * scale_factor)
            
            # VAAPI upscaling (simplified - you'd need proper VAAPI setup)
            # This is a placeholder for actual VAAPI implementation
            if method == "VAAPI_BICUBIC":
                return cv2.resize(image_array, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
            elif method == "VAAPI_LANCZOS":
                return cv2.resize(image_array, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
            
        except Exception as e:
            print(f"VAAPI upscaling failed: {e}")
            return None

# Initialize upscalers
torch_upscaler = TorchUpscaler()
vaapi_upscaler = VAAPIUpscaler()

@spaces.GPU if HAS_ZEROGPU else lambda x: x
def upscale_image_accelerated(image, scale_factor, method, enhance_quality, use_gpu_acceleration):
    """
    Accelerated upscaling with GPU/VAAPI support
    """
    if image is None:
        return None
    
    original_width, original_height = image.size
    new_width = int(original_width * scale_factor)
    new_height = int(original_height * scale_factor)
    
    try:
        if use_gpu_acceleration and torch.cuda.is_available():
            # GPU-accelerated upscaling
            print("Using GPU acceleration")
            
            # Convert PIL to tensor
            transform = transforms.Compose([
                transforms.ToTensor(),
            ])
            
            image_tensor = transform(image).unsqueeze(0).to(torch_upscaler.device)
            
            if method == "GPU_Bicubic":
                upscaled_tensor = torch_upscaler.bicubic_torch(image_tensor, scale_factor)
            elif method == "GPU_Lanczos":
                upscaled_tensor = torch_upscaler.lanczos_torch(image_tensor, scale_factor)
            elif method == "GPU_ESRGAN_Style":
                upscaled_tensor = torch_upscaler.esrgan_style_upscale(image_tensor, scale_factor)
            else:
                upscaled_tensor = torch_upscaler.bicubic_torch(image_tensor, scale_factor)
            
            # Convert back to PIL
            upscaled_tensor = upscaled_tensor.squeeze(0).cpu()
            to_pil = transforms.ToPILImage()
            upscaled = to_pil(upscaled_tensor)
            
        elif method.startswith("VAAPI_") and HAS_VAAPI:
            # VAAPI hardware acceleration
            print("Using VAAPI acceleration")
            img_array = np.array(image)
            upscaled_array = vaapi_upscaler.upscale_vaapi(img_array, scale_factor, method)
            
            if upscaled_array is not None:
                upscaled = Image.fromarray(upscaled_array)
            else:
                # Fallback to CPU
                upscaled = image.resize((new_width, new_height), Image.BICUBIC)
                
        else:
            # CPU fallback methods
            print("Using CPU methods")
            img_array = np.array(image)
            
            if method == "Bicubic":
                upscaled = image.resize((new_width, new_height), Image.BICUBIC)
            elif method == "Lanczos":
                upscaled = image.resize((new_width, new_height), Image.LANCZOS)
            elif method == "EDSR (OpenCV)":
                img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
                upscaled_bgr = cv2.resize(img_bgr, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
                upscaled_rgb = cv2.cvtColor(upscaled_bgr, cv2.COLOR_BGR2RGB)
                upscaled = Image.fromarray(upscaled_rgb)
            elif method == "Nearest Neighbor":
                upscaled = image.resize((new_width, new_height), Image.NEAREST)
            else:
                upscaled = image.resize((new_width, new_height), Image.BICUBIC)
        
        # Apply quality enhancement
        if enhance_quality:
            upscaled = upscaled.filter(ImageFilter.UnsharpMask(radius=1, percent=120, threshold=3))
        
        return upscaled
        
    except Exception as e:
        print(f"Error during upscaling: {e}")
        return image

def get_available_methods():
    """Get list of available upscaling methods based on hardware"""
    methods = ["Bicubic", "Lanczos", "EDSR (OpenCV)", "Nearest Neighbor"]
    
    if torch.cuda.is_available():
        methods.extend(["GPU_Bicubic", "GPU_Lanczos", "GPU_ESRGAN_Style"])
    
    if HAS_VAAPI:
        methods.extend(["VAAPI_BICUBIC", "VAAPI_LANCZOS"])
    
    return methods

def get_system_info():
    """Get system acceleration information"""
    info = []
    
    # CUDA info
    if torch.cuda.is_available():
        gpu_name = torch.cuda.get_device_name(0)
        gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
        info.append(f"πŸš€ CUDA GPU: {gpu_name} ({gpu_memory:.1f} GB)")
    else:
        info.append("❌ CUDA not available")
    
    # ZeroGPU info
    if HAS_ZEROGPU:
        info.append("βœ… ZeroGPU support enabled")
    else:
        info.append("❌ ZeroGPU not available")
    
    # VAAPI info
    if HAS_VAAPI:
        info.append("βœ… VAAPI hardware acceleration available")
    else:
        info.append("❌ VAAPI not available")
    
    return "\n".join(info)

def process_and_info_accelerated(image, scale_factor, method, enhance_quality, use_gpu_acceleration):
    """Process image with acceleration and return info"""
    if image is None:
        return None, "Please upload an image first"
    
    # Get original info
    original_info = f"Original: {image.size[0]} Γ— {image.size[1]} pixels"
    
    # Process image
    result = upscale_image_accelerated(image, scale_factor, method, enhance_quality, use_gpu_acceleration)
    
    if result is None:
        return None, "Error processing image"
    
    # Get result info
    result_info = f"Upscaled: {result.size[0]} Γ— {result.size[1]} pixels"
    
    # Acceleration info
    accel_info = "CPU" if not use_gpu_acceleration else "GPU/Hardware"
    
    combined_info = f"""
    ## Processing Details
    {original_info}  
    {result_info}  
    **Scale Factor:** {scale_factor}x  
    **Method:** {method}  
    **Acceleration:** {accel_info}  
    **Quality Enhancement:** {'βœ…' if enhance_quality else '❌'}
    
    ## System Status
    {get_system_info()}
    """
    
    return result, combined_info

# Create the accelerated interface
def create_accelerated_upscaler():
    available_methods = get_available_methods()
    
    with gr.Blocks(title="Accelerated Image Upscaler", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸš€ Accelerated Image Upscaler
        
        High-performance image upscaling with GPU and hardware acceleration support.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(
                    type="pil",
                    label="Upload Image",
                    sources=["upload", "clipboard"]
                )
                
                scale_factor = gr.Slider(
                    minimum=1.5,
                    maximum=4.0,
                    step=0.5,
                    value=2.0,
                    label="Scale Factor"
                )
                
                method = gr.Dropdown(
                    choices=available_methods,
                    value=available_methods[0],
                    label="Upscaling Method"
                )
                
                use_gpu_acceleration = gr.Checkbox(
                    label="Use GPU Acceleration",
                    value=torch.cuda.is_available()
                )
                
                enhance_quality = gr.Checkbox(
                    label="Apply Quality Enhancement",
                    value=True
                )
                
                process_btn = gr.Button("πŸš€ Upscale Image", variant="primary")
                
                gr.Markdown(f"""
                ### Available Methods:
                - **Standard**: Bicubic, Lanczos, EDSR, Nearest
                - **GPU**: {', '.join([m for m in available_methods if m.startswith('GPU_')])}
                - **VAAPI**: {', '.join([m for m in available_methods if m.startswith('VAAPI_')])}
                """)
            
            with gr.Column(scale=2):
                output_image = gr.Image(
                    label="Upscaled Image",
                    type="pil"
                )
                
                image_info = gr.Markdown(
                    value=f"## System Status\n{get_system_info()}",
                    label="Processing Information"
                )
        
        # Event handlers
        process_btn.click(
            fn=process_and_info_accelerated,
            inputs=[input_image, scale_factor, method, enhance_quality, use_gpu_acceleration],
            outputs=[output_image, image_info]
        )
    
    return demo

# Launch the interface
if __name__ == "__main__":
    demo = create_accelerated_upscaler()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )