Spaces:
Sleeping
Sleeping
File size: 4,850 Bytes
0ec61d2 01fa7b6 0ec61d2 01fa7b6 0ec61d2 601ac30 5fcf580 601ac30 0ec61d2 601ac30 0ec61d2 5fcf580 0ec61d2 5fcf580 0ec61d2 5fcf580 0ec61d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import json
import os
import sys
import time
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
from google import genai
from google.genai import types
from project_settings import environment, project_path
def get_args():
"""
python3 eval_gemini_google.py --model_name gemini-2.5-pro --eval_result eval_math_result_gemini-2.5-pro.jsonl
python3 eval_gemini_google.py --model_name gemini-2.5-flash --eval_result eval_math_result_gemini-2.5-flash.jsonl
python3 eval_gemini_google.py --model_name gemini-2.5-flash-lite-preview-06-17 --eval_result eval_math_result_gemini-2.5-flash-lite-preview-06-17.jsonl
:return:
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--google_application_credentials",
default=(project_path / "dotenv/potent-veld-462405-t3-8091a29b2894.json").as_posix(),
type=str
)
parser.add_argument(
"--model_name",
# default="gemini-2.5-pro",
# default="gemini-2.5-flash",
default="gemini-2.5-flash-lite-preview-06-17",
type=str
)
parser.add_argument(
"--eval_data",
default=(project_path / "data/arc-easy.jsonl").as_posix(),
type=str
)
parser.add_argument(
"--eval_result",
default=(project_path / "data/eval_math_result.jsonl").as_posix(),
type=str
)
args = parser.parse_args()
return args
def main():
args = get_args()
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = args.google_application_credentials
client = genai.Client(
vertexai=True,
project="potent-veld-462405-t3",
location="global",
)
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
max_output_tokens=8192,
response_modalities=["TEXT"],
)
total = 0
total_correct = 0
# finished
finished_idx_set = set()
if os.path.exists(args.eval_result):
with open(args.eval_result, "r", encoding="utf-8") as f:
for row in f:
row = json.loads(row)
idx = row["id"]
total = row["total"]
total_correct = row["total_correct"]
finished_idx_set.add(idx)
print(f"finished count: {len(finished_idx_set)}")
with open(args.eval_data, "r", encoding="utf-8") as fin, open(args.eval_result, "a+", encoding="utf-8") as fout:
for row in fin:
if total > 20:
break
row = json.loads(row)
idx = row["id"]
question = row["question"]
choices = row["choices"]
answer_key = row["answerkey"]
if idx in finished_idx_set:
continue
finished_idx_set.add(idx)
instruct = "Complete this single-choice question."
choices_str = ""
for choice in choices:
label = choice["label"]
text = choice["text"]
choices_str += f"If you think the answer is `{text}` output: `{label}`\n"
prompt = f"""
{instruct}
Question:
{question}
Choices:
{choices_str}
Remember to output ONLY the corresponding letter.
Your output is:
""".strip()
# print(prompt)
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=prompt)
]
)
]
time_begin = time.time()
response: types.GenerateContentResponse = client.models.generate_content(
model=args.model_name,
contents=contents,
config=generate_content_config,
)
time_cost = time.time() - time_begin
print(time_cost)
try:
prediction = response.candidates[0].content.parts[0].text
except TypeError:
continue
correct = 1 if prediction == answer_key else 0
total += 1
total_correct += correct
score = total_correct / total
row_ = {
"id": idx,
"question": question,
"choices": choices,
"ground_true": answer_key,
"prediction": prediction,
"correct": correct,
"total": total,
"total_correct": total_correct,
"score": score,
"time_cost": time_cost,
}
row_ = json.dumps(row_, ensure_ascii=False)
fout.write(f"{row_}\n")
# print(f"score: {score}")
return
if __name__ == "__main__":
main()
|