File size: 5,170 Bytes
054b62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f50d71c
8ae9295
 
 
 
 
 
054b62d
 
 
 
 
 
 
 
 
 
 
f50d71c
054b62d
 
 
 
 
f50d71c
054b62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from functools import lru_cache
import logging
from pathlib import Path
import platform
import zipfile
from typing import Tuple

from project_settings import log_directory
import log

log.setup_size_rotating(log_directory=log_directory)

import gradio as gr
from df.enhance import enhance as df_enhance
from df.enhance import init_df as df_init_df
from df.enhance import load_audio as df_load_audio
from libdf import DF
import numpy as np
import torch
import torch.nn as nn

from project_settings import project_path, environment, temp_directory
from toolbox.os.command import Command

main_logger = logging.getLogger("main")


def shell(cmd: str):
    return Command.popen(cmd)


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--noise_suppression_examples_wav_dir",
        default=(project_path / "data/examples").as_posix(),
        type=str
    )
    parser.add_argument(
        "--server_port",
        default=environment.get("server_port", 7860),
        type=int
    )
    args = parser.parse_args()
    return args


@lru_cache(maxsize=10)
def load_df_model(model_name: str) -> Tuple[nn.Module, DF]:
    model_base_dir = temp_directory / "df"
    model_dir = model_base_dir / model_name

    main_logger.info("load model: {}".format(model_name))
    model_file = project_path / "trained_models/df/{}.zip".format(model_name)
    if not model_dir.exists():
        with zipfile.ZipFile(model_file) as zf:
            zf.extractall(
                model_base_dir.as_posix()
            )

    model, df_state, _ = df_init_df(
        model_base_dir=model_dir.as_posix(),
    )

    return model, df_state


def do_df_noise_suppression(filename: str, model_name: str) -> Tuple[int, np.ndarray]:
    model, df_state = load_df_model(model_name)

    main_logger.info("load audio: {}".format(filename))
    audio, _ = df_load_audio(
        file=filename,
        sr=df_state.sr()
    )

    main_logger.info("run enhance.")
    enhanced: torch.Tensor = df_enhance(
        model=model,
        df_state=df_state,
        audio=audio,
    )
    enhanced = enhanced[0].numpy()
    enhanced = enhanced * (1 << 15)
    enhanced = np.array(enhanced, dtype=np.int16)
    return df_state.sr(), enhanced


def do_noise_suppression(filename: str, model_name: str):
    if model_name in (
        "DeepFilterNet",
        "DeepFilterNet2",
        "DeepFilterNet3",
    ):
        return do_df_noise_suppression(filename, model_name)
    else:
        raise AssertionError("invalid model name: {}".format(model_name))


def main():
    args = get_args()

    noise_suppression_examples_wav_dir = Path(args.noise_suppression_examples_wav_dir)
    noise_suppression_examples = list()
    for filename in noise_suppression_examples_wav_dir.glob("*/*.wav"):
        name = filename.parts[-2]

        model_name = "DeepFilterNet3" if name == "df" else name

        noise_suppression_examples.append([
            filename.as_posix(),
            model_name,
        ])

    title = "## Speech Enhancement and Noise Suppression."

    # blocks
    with gr.Blocks() as blocks:
        gr.Markdown(value=title)

        with gr.Tabs():
            with gr.TabItem("SE"):
                se_file = gr.Audio(
                    sources=["upload"],
                    type="filepath",
                    label="file",
                )
                se_model_name = gr.Dropdown(
                    choices=[
                        "DeepFilterNet", "DeepFilterNet2", "DeepFilterNet3"
                    ],
                    value="DeepFilterNet3",
                    label="model_name",
                )

                se_button = gr.Button("run")
                se_enhanced = gr.Audio(type="numpy", label="enhanced")

                gr.Examples(
                    examples=noise_suppression_examples,
                    inputs=[
                        se_file, se_model_name
                    ],
                    outputs=[
                        se_enhanced
                    ],
                    fn=do_df_noise_suppression
                )

                se_button.click(
                    do_noise_suppression,
                    inputs=[
                        se_file, se_model_name
                    ],
                    outputs=[
                        se_enhanced
                    ],
                )

            with gr.TabItem("shell"):
                shell_text = gr.Textbox(label="cmd")
                shell_button = gr.Button("run")
                shell_output = gr.Textbox(label="output")

                shell_button.click(
                    shell,
                    inputs=[
                        shell_text,
                    ],
                    outputs=[
                        shell_output
                    ],
                )

    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=args.server_port
    )

    return


if __name__ == '__main__':
    main()